Graph2MDA: a multi-modal variational graph embedding model for predicting microbe–drug associations

计算机科学 自编码 机器学习 人工智能 分类器(UML) 图形 聚类分析 药品 图嵌入 计算生物学
作者
Lei Deng,Yibiao Huang,Xuejun Liu,Hui Liu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (4): 1118-1125
标识
DOI:10.1093/bioinformatics/btab792
摘要

Abstract Motivation Accumulated clinical studies show that microbes living in humans interact closely with human hosts, and get involved in modulating drug efficacy and drug toxicity. Microbes have become novel targets for the development of antibacterial agents. Therefore, screening of microbe–drug associations can benefit greatly drug research and development. With the increase of microbial genomic and pharmacological datasets, we are greatly motivated to develop an effective computational method to identify new microbe–drug associations. Results In this article, we proposed a novel method, Graph2MDA, to predict microbe–drug associations by using variational graph autoencoder (VGAE). We constructed multi-modal attributed graphs based on multiple features of microbes and drugs, such as molecular structures, microbe genetic sequences and function annotations. Taking as input the multi-modal attribute graphs, VGAE was trained to learn the informative and interpretable latent representations of each node and the whole graph, and then a deep neural network classifier was used to predict microbe–drug associations. The hyperparameter analysis and model ablation studies showed the sensitivity and robustness of our model. We evaluated our method on three independent datasets and the experimental results showed that our proposed method outperformed six existing state-of-the-art methods. We also explored the meaning of the learned latent representations of drugs and found that the drugs show obvious clustering patterns that are significantly consistent with drug ATC classification. Moreover, we conducted case studies on two microbes and two drugs and found 75–95% predicted associations have been reported in PubMed literature. Our extensive performance evaluations validated the effectiveness of our proposed method. Availability and implementation Source codes and preprocessed data are available at https://github.com/moen-hyb/Graph2MDA. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔治发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
chen举报HelloWorld求助涉嫌违规
6秒前
anagenesis发布了新的文献求助30
6秒前
miumiuka完成签到,获得积分10
6秒前
fei2009xue应助qizhixu采纳,获得10
7秒前
劲秉应助念姬采纳,获得10
7秒前
8秒前
红汤加煎蛋完成签到,获得积分10
9秒前
bkagyin应助ff采纳,获得10
11秒前
lixiaolu发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
九儿完成签到 ,获得积分10
13秒前
13秒前
Orange应助zijingliang采纳,获得10
15秒前
15秒前
FY发布了新的文献求助10
16秒前
孔wj完成签到,获得积分10
16秒前
wjm完成签到,获得积分10
18秒前
乔治完成签到,获得积分10
18秒前
Ll_l完成签到,获得积分10
18秒前
过儿发布了新的文献求助10
18秒前
孔wj发布了新的文献求助10
19秒前
19秒前
大个应助月亮是甜的采纳,获得10
20秒前
23秒前
maox1aoxin应助0323采纳,获得30
23秒前
延毕使者发布了新的文献求助10
23秒前
anagenesis完成签到 ,获得积分10
24秒前
跳跃雯完成签到,获得积分10
27秒前
okkk完成签到,获得积分10
28秒前
sa完成签到 ,获得积分10
30秒前
30秒前
xuexin发布了新的文献求助10
31秒前
Owen应助拙青采纳,获得10
31秒前
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459176
求助须知:如何正确求助?哪些是违规求助? 3053746
关于积分的说明 9038127
捐赠科研通 2743025
什么是DOI,文献DOI怎么找? 1504631
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663