Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration

均方误差 岩石爆破 梯度升压 决定系数 计算机科学 Boosting(机器学习) 粒子群优化 数学 人工智能 统计 数学优化 工程类 随机森林 岩土工程
作者
Yingui Qiu,Jian Zhou,Manoj Khandelwal,Haitao Yang,Peixi Yang,Chuanqi Li
出处
期刊:Engineering With Computers [Springer Nature]
卷期号:38 (S5): 4145-4162 被引量:245
标识
DOI:10.1007/s00366-021-01393-9
摘要

Accurate prediction of ground vibration caused by blasting has always been a significant issue in the mining industry. Ground vibration caused by blasting is a harmful phenomenon to nearby buildings and should be prevented. In this regard, a new intelligent method for predicting peak particle velocity (PPV) induced by blasting had been developed. Accordingly, 150 sets of data composed of thirteen uncontrollable and controllable indicators are selected as input dependent variables, and the measured PPV is used as the output target for characterizing blast-induced ground vibration. Also, in order to enhance its predictive accuracy, the gray wolf optimization (GWO), whale optimization algorithm (WOA) and Bayesian optimization algorithm (BO) are applied to fine-tune the hyper-parameters of the extreme gradient boosting (XGBoost) model. According to the root mean squared error (RMSE), determination coefficient (R2), the variance accounted for (VAF), and mean absolute error (MAE), the hybrid models GWO-XGBoost, WOA-XGBoost, and BO-XGBoost were verified. Additionally, XGBoost, CatBoost (CatB), Random Forest, and gradient boosting regression (GBR) were also considered and used to compare the multiple hybrid-XGBoost models that have been developed. The values of RMSE, R2, VAF, and MAE obtained from WOA-XGBoost, GWO-XGBoost, and BO-XGBoost models were equal to (3.0538, 0.9757, 97.68, 2.5032), (3.0954, 0.9751, 97.62, 2.5189), and (3.2409, 0.9727, 97.65, 2.5867), respectively. Findings reveal that compared with other machine learning models, the proposed WOA-XGBoost became the most reliable model. These three optimized hybrid models are superior to the GBR model, CatB model, Random Forest model, and the XGBoost model, confirming the ability of the meta-heuristic algorithm to enhance the performance of the PPV model, which can be helpful for mine planners and engineers using advanced supervised machine learning with metaheuristic algorithms for predicting ground vibration caused by explosions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MADKAI发布了新的文献求助10
刚刚
刚刚
117发布了新的文献求助10
刚刚
1秒前
1秒前
酶没美镁完成签到,获得积分10
1秒前
小二郎应助Rui采纳,获得10
1秒前
Libra完成签到,获得积分10
2秒前
雪儿发布了新的文献求助30
2秒前
无悔呀发布了新的文献求助10
2秒前
小巧的可仁完成签到 ,获得积分10
2秒前
2秒前
zhao完成签到,获得积分10
3秒前
masu发布了新的文献求助10
3秒前
冷酷尔琴发布了新的文献求助10
4秒前
Ll发布了新的文献求助10
4秒前
优雅山柏完成签到,获得积分10
4秒前
XinyiZhang发布了新的文献求助10
4秒前
小蘑菇应助yangyang采纳,获得10
4秒前
慕青应助欢欢采纳,获得10
5秒前
小憩完成签到,获得积分10
5秒前
南乔发布了新的文献求助10
5秒前
张静静发布了新的文献求助10
6秒前
云儿完成签到,获得积分10
6秒前
淡淡的洋葱完成签到,获得积分10
6秒前
小洲王先生完成签到,获得积分10
7秒前
7秒前
dd完成签到,获得积分10
7秒前
7秒前
8秒前
CCL应助kk2024采纳,获得50
8秒前
wjs0406完成签到,获得积分10
8秒前
自爱悠然发布了新的文献求助10
8秒前
贺雪完成签到,获得积分10
9秒前
9秒前
玉yu发布了新的文献求助10
10秒前
深情秋刀鱼完成签到,获得积分10
10秒前
星辰大海应助冷酷尔琴采纳,获得10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740