已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration

均方误差 岩石爆破 梯度升压 决定系数 计算机科学 Boosting(机器学习) 粒子群优化 数学 人工智能 统计 数学优化 工程类 随机森林 岩土工程
作者
Yingui Qiu,Jian Zhou,Manoj Khandelwal,Haitao Yang,Peixi Yang,Chuanqi Li
出处
期刊:Engineering With Computers [Springer Nature]
卷期号:38 (S5): 4145-4162 被引量:245
标识
DOI:10.1007/s00366-021-01393-9
摘要

Accurate prediction of ground vibration caused by blasting has always been a significant issue in the mining industry. Ground vibration caused by blasting is a harmful phenomenon to nearby buildings and should be prevented. In this regard, a new intelligent method for predicting peak particle velocity (PPV) induced by blasting had been developed. Accordingly, 150 sets of data composed of thirteen uncontrollable and controllable indicators are selected as input dependent variables, and the measured PPV is used as the output target for characterizing blast-induced ground vibration. Also, in order to enhance its predictive accuracy, the gray wolf optimization (GWO), whale optimization algorithm (WOA) and Bayesian optimization algorithm (BO) are applied to fine-tune the hyper-parameters of the extreme gradient boosting (XGBoost) model. According to the root mean squared error (RMSE), determination coefficient (R2), the variance accounted for (VAF), and mean absolute error (MAE), the hybrid models GWO-XGBoost, WOA-XGBoost, and BO-XGBoost were verified. Additionally, XGBoost, CatBoost (CatB), Random Forest, and gradient boosting regression (GBR) were also considered and used to compare the multiple hybrid-XGBoost models that have been developed. The values of RMSE, R2, VAF, and MAE obtained from WOA-XGBoost, GWO-XGBoost, and BO-XGBoost models were equal to (3.0538, 0.9757, 97.68, 2.5032), (3.0954, 0.9751, 97.62, 2.5189), and (3.2409, 0.9727, 97.65, 2.5867), respectively. Findings reveal that compared with other machine learning models, the proposed WOA-XGBoost became the most reliable model. These three optimized hybrid models are superior to the GBR model, CatB model, Random Forest model, and the XGBoost model, confirming the ability of the meta-heuristic algorithm to enhance the performance of the PPV model, which can be helpful for mine planners and engineers using advanced supervised machine learning with metaheuristic algorithms for predicting ground vibration caused by explosions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hqyqh1314发布了新的文献求助30
1秒前
李思超发布了新的文献求助220
2秒前
5秒前
6秒前
6秒前
7秒前
坚定以筠完成签到,获得积分20
8秒前
hqyqh1314完成签到,获得积分10
8秒前
高大zj发布了新的文献求助10
9秒前
佳远发布了新的文献求助10
10秒前
11秒前
12秒前
喜欢发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
简单秋烟发布了新的文献求助10
16秒前
ET发布了新的文献求助10
17秒前
18秒前
20秒前
所所应助科研通管家采纳,获得10
20秒前
烟花应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
何柯发布了新的文献求助10
22秒前
星辰大海应助LiBo采纳,获得10
22秒前
缥缈的访云完成签到,获得积分10
23秒前
命运发布了新的文献求助20
24秒前
慕青应助大头仙女采纳,获得10
27秒前
远山完成签到 ,获得积分10
28秒前
fancccc完成签到,获得积分10
28秒前
JamesPei应助小军采纳,获得10
28秒前
橘子发布了新的文献求助10
29秒前
leeking完成签到,获得积分10
29秒前
30秒前
30秒前
搜集达人应助cookie采纳,获得10
30秒前
31秒前
31秒前
fancccc发布了新的文献求助10
33秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125744
求助须知:如何正确求助?哪些是违规求助? 2776037
关于积分的说明 7728973
捐赠科研通 2431507
什么是DOI,文献DOI怎么找? 1292095
科研通“疑难数据库(出版商)”最低求助积分说明 622375
版权声明 600380