图像分割
分割
人工智能
计算机科学
水平集(数据结构)
模式识别(心理学)
计算机视觉
活动轮廓模型
尺度空间分割
噪音(视频)
稳健性(进化)
符号距离函数
图像(数学)
生物化学
基因
化学
作者
Afzal Rahman,Haider Ali,Noor Badshah,Lavdie Rada,Ayaz Ali Khan,Hameed Hussain,Muhammad Zakarya,Aftab Ahmed,Izaz Ur Rahman,Mushtaq Raza,Muhammad Abdel Haleem
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:10: 22344-22358
被引量:12
标识
DOI:10.1109/access.2022.3152785
摘要
Selective image segmentation is one of the most significant subjects in medical imaging and real-world applications. We present a robust selective segmentation model based on local spatial distance utilizing a dual-level set variational formulation in this study. Our concept tries to partition all objects using a global level set function and the selected item using a different level set function (local). Our model combines the marker distance function, edge detection, local spatial distance, and active contour without edges into one. The new model is robust to noise and gives better performance for images having intensity in-homogeneity (background and foreground). Moreover, we observed that the proposed model captures objects which do not have uniform features. The experimental results show that our model is robust to noise and works better than the other existing models.
科研通智能强力驱动
Strongly Powered by AbleSci AI