材料科学
纳米压痕
掺杂剂
无定形固体
兴奋剂
碳化硅
复合材料
薄脆饼
变形(气象学)
基质(水族馆)
宽禁带半导体
变形机理
弹性模量
纳米技术
结晶学
光电子学
微观结构
地质学
海洋学
化学
作者
Xiaoshuang Liu,Junran Zhang,Binjie Xu,Yunhao Lu,Yiqiang Zhang,Rong Wang,Deren Yang,Xiaodong Pi
摘要
The role of dopants on deformation and mechanical properties of 4H silicon carbide (4H-SiC) is proposed by using nanoindentation. It is found that the hardness, elastic modulus, and fracture toughness of 4H-SiC substrate wafers all decrease on the order of vanadium (V) doping, undoping, and nitrogen (N) doping. For all three types of 4H-SiC, basal plane dislocations (BPDs), threading edge dislocations, and cracks are formed during the nanoindentation. Polymorph transitions from 4H-SiC to amorphous SiC and 3C-SiC are found as the penetration depth of the indent increases from the subsurface to the deeper region. N doping is found to weaken the bond strength of 4H-SiC, which enhances the glide and piling up of BPDs in nanoindentated N-doped 4H-SiC. In contrast, V doping effectively hinders the glide of BPDs, which accumulates a high-stress field and facilitates the polymorph transition from 4H-SiC to 3C-SiC and amorphous SiC. The insight on the effects of dopants on the deformation and mechanical properties of 4H-SiC may help the design of the processing of differently doped 4H-SiC substrate wafers.
科研通智能强力驱动
Strongly Powered by AbleSci AI