Automated detection of emotional and cognitive engagement in MOOC discussions to predict learning achievement

认知 心理学 学生参与度 认知心理学 数学教育 神经科学
作者
Sannyuya Liu,Shiqi Liu,Zhi Liu,Xian Peng,Zongkai Yang
出处
期刊:Computers & education [Elsevier BV]
卷期号:181: 104461-104461 被引量:125
标识
DOI:10.1016/j.compedu.2022.104461
摘要

In the MOOC forum discussions, emotional and cognitive engagement are two prominent aspects of learning engagement. Moreover, emotional and cognitive engagement have an interactive relationship and can jointly predict learning achievement. However, these interwoven relationships have not been thoroughly explored. Furthermore, the limitations on detection methods for emotional and cognitive engagement have hindered the practice and theory progress. This study aimed to develop a novel text classification model to automatically detect emotional and cognitive engagement and investigate their complex relationships with achievement, which are beneficial for improving learning engagement and historically low completion rates of MOOCs. Firstly, this study proposed a robust and interpretable NLP model called the bidirectional encoder representation from the transformers-convolutional neural network (BERT-CNN). Compared with models in previous studies, it improved the F1 values of emotional and cognitive engagement recognition tasks by 10% and 8%, respectively. Secondly, this study used BERT-CNN to analyze 8867 learners’ discussions in a MOOC forum. Structural equation modeling indicated that emotional and cognitive engagement have an interactive relationship and a combined effect on learning achievement. Specifically, positive and confused emotions contributed more to higher-level cognition than negative emotions. Co-occurring emotion and cognition indicators jointly predicted learning achievement with higher reliability. In summary, this study has significant methodological implications for the automated measurement of emotional and cognitive engagement. Moreover, the study revealed the dominant role of emotional engagement on cognitive engagement and provided suggestions for improving MOOC learners' achievement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美汁源完成签到,获得积分10
刚刚
英姑应助QWE采纳,获得10
1秒前
心斋留下了新的社区评论
1秒前
Owen应助pipi采纳,获得10
1秒前
耍酷的白梦完成签到,获得积分10
2秒前
勤奋的凌翠完成签到 ,获得积分10
2秒前
bkagyin应助gy采纳,获得10
2秒前
2秒前
十二应助炒鸡小将采纳,获得10
3秒前
啊啊啊啊完成签到,获得积分10
3秒前
hyf567完成签到,获得积分10
4秒前
4秒前
4秒前
小柠完成签到,获得积分20
5秒前
zhaoyanan发布了新的文献求助10
5秒前
6秒前
feilei完成签到,获得积分10
6秒前
7秒前
Lorain发布了新的文献求助10
8秒前
8秒前
咕噜噜完成签到,获得积分10
8秒前
wangxiaoer完成签到,获得积分10
9秒前
遁一发布了新的文献求助10
9秒前
整齐冬瓜完成签到,获得积分10
9秒前
xhuryts完成签到,获得积分10
10秒前
轻松的璐啦啦完成签到 ,获得积分10
10秒前
10秒前
cindy完成签到,获得积分10
10秒前
11秒前
lbw完成签到 ,获得积分10
11秒前
在我梦里绕完成签到,获得积分10
11秒前
CYP完成签到 ,获得积分10
12秒前
Harlotte完成签到 ,获得积分10
12秒前
AQ完成签到,获得积分10
12秒前
12秒前
ark861023完成签到,获得积分10
13秒前
沐橘完成签到,获得积分20
13秒前
ningmengcao发布了新的文献求助10
13秒前
14秒前
flysky120完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953555
求助须知:如何正确求助?哪些是违规求助? 3499137
关于积分的说明 11094114
捐赠科研通 3229679
什么是DOI,文献DOI怎么找? 1785728
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478