门控
材料科学
电化学
离子键合
X射线光电子能谱
结晶学
凝聚态物理
分析化学(期刊)
物理
核磁共振
物理化学
离子
化学
电极
生理学
量子力学
色谱法
生物
作者
Sajna Hameed,Bryan Voigt,John E. Dewey,William C. Moore,Damjan Pelc,Bhaskar Das,S. El-Khatib,Javier García‐Barriocanal,Bing Luo,Nicholas C.A. Seaton,Guichuan Yu,Chris Leighton,M. Greven
出处
期刊:Physical Review Materials
[American Physical Society]
日期:2022-06-07
卷期号:6 (6)
标识
DOI:10.1103/physrevmaterials.6.064601
摘要
We explore the effect of ionic-liquid gating in the antiferromagnetic Mott insulator ${\mathrm{NiS}}_{2}$. Through temperature- and gate-voltage-dependent electronic transport measurements, a gating-induced three-dimensional metallic state is observed at positive gate bias on single-crystal surfaces. Based on transport, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, atomic force microscopy, and other techniques, we deduce an $\mathit{electrochemical}$ gating mechanism involving a substantial decrease in the S:Ni ratio over hundreds of nanometers, which is both nonvolatile and irreversible. Such findings are in striking contrast to the reversible, volatile, two-dimensional $\mathit{electrostatic}$ gate effect previously seen in pyrite ${\mathrm{FeS}}_{2}$. We attribute this stark difference in electrochemical vs electrostatic gating response in ${\mathrm{NiS}}_{2}$ and ${\mathrm{FeS}}_{2}$ to the much larger S diffusion coefficient in ${\mathrm{NiS}}_{2}$. The gating irreversibility, on the other hand, is associated with the lack of atmospheric S, in contrast to the better understood oxide case, where electrolysis of atmospheric ${\mathrm{H}}_{2}\mathrm{O}$ provides an O reservoir. The present study of ${\mathrm{NiS}}_{2}$ thus provides insight into electrolyte gating mechanisms in functional materials, in a relatively unexplored limit.
科研通智能强力驱动
Strongly Powered by AbleSci AI