亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Which Picker Fits My Data? A Quantitative Evaluation of Deep Learning Based Seismic Pickers

水准点(测量) 计算机科学 工作流程 深度学习 领域(数学) 机器学习 事件(粒子物理) 领域(数学分析) 人工智能 编码(集合论) 鉴定(生物学) 数据挖掘 数据库 程序设计语言 纯数学 地理 物理 集合(抽象数据类型) 数学分析 生物 量子力学 植物 数学 大地测量学
作者
Jannes Münchmeyer,Jack Woollam,Andreas Rietbrock,Frederik Tilmann,Dietrich Lange,Thomas Bornstein,Tobias Diehl,C. Giunchi,Florian Haslinger,Dario Jozinović,Alberto Michelini,Joachim Saul,Hugo Soto
出处
期刊:Journal Of Geophysical Research: Solid Earth [Wiley]
卷期号:127 (1) 被引量:54
标识
DOI:10.1029/2021jb023499
摘要

Seismic event detection and phase picking are the base of many seismological workflows. In recent years, several publications demonstrated that deep learning approaches significantly outperform classical approaches and even achieve human-like performance under certain circumstances. However, as most studies differ in the datasets and exact evaluation tasks studied, it is yet unclear how the different approaches compare to each other. Furthermore, there are no systematic studies how the models perform in a cross-domain scenario, i.e., when applied to data with different characteristics. Here, we address these questions by conducting a large-scale benchmark study. We compare six previously published deep learning models on eight datasets covering local to teleseismic distances and on three tasks: event detection, phase identification and onset time picking. Furthermore, we compare the results to a classical Baer-Kradolfer picker. Overall, we observe the best performance for EQTransformer, GPD and PhaseNet, with EQTransformer having a small advantage for teleseismic data. Furthermore, we conduct a cross-domain study, in which we analyze model performance on datasets they were not trained on. We show that trained models can be transferred between regions with only mild performance degradation, but not from regional to teleseismic data or vice versa. As deep learning for detection and picking is a rapidly evolving field, we ensured extensibility of our benchmark by building our code on standardized frameworks and making it openly accessible. This allows model developers to easily compare new models or evaluate performance on new datasets, beyond those presented here. Furthermore, we make all trained models available through the SeisBench framework, giving end-users an easy way to apply these models in seismological analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jerry完成签到,获得积分10
8秒前
16秒前
科研通AI2S应助嫤姝采纳,获得10
18秒前
Joeswith完成签到,获得积分10
20秒前
20秒前
科研通AI2S应助嫤姝采纳,获得10
23秒前
30秒前
阿鑫完成签到 ,获得积分10
31秒前
amit_弢完成签到,获得积分10
31秒前
zkk完成签到 ,获得积分10
34秒前
HY发布了新的文献求助10
35秒前
Orange应助Jonah采纳,获得10
37秒前
1461644768完成签到,获得积分10
42秒前
逸风望完成签到,获得积分10
47秒前
起风了完成签到 ,获得积分10
49秒前
50秒前
义气觅荷发布了新的文献求助10
56秒前
深情的一曲完成签到,获得积分10
58秒前
大模型应助LLL采纳,获得10
1分钟前
Jamie发布了新的文献求助10
1分钟前
1分钟前
Du发布了新的文献求助20
1分钟前
Jonah发布了新的文献求助10
1分钟前
余念安完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
suhua完成签到,获得积分20
1分钟前
Yam呀完成签到 ,获得积分10
1分钟前
caitlin完成签到 ,获得积分10
1分钟前
feng完成签到 ,获得积分10
1分钟前
沙砾完成签到,获得积分10
1分钟前
Jonah完成签到,获得积分20
1分钟前
Jamie完成签到,获得积分10
1分钟前
1分钟前
义气觅荷完成签到,获得积分20
1分钟前
海燕发布了新的文献求助30
1分钟前
LLL发布了新的文献求助10
1分钟前
Du完成签到,获得积分20
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460014
求助须知:如何正确求助?哪些是违规求助? 3054351
关于积分的说明 9041742
捐赠科研通 2743636
什么是DOI,文献DOI怎么找? 1505027
科研通“疑难数据库(出版商)”最低求助积分说明 695572
邀请新用户注册赠送积分活动 694860