香芹酚
材料科学
复合数
氧化还原
化学工程
纳米技术
抗菌剂
有机化学
化学
复合材料
冶金
工程类
作者
Katia Caamaño,Raquel Heras-Mozos,Joaquín Calbo,Jesús Cases Díaz,João C. Waerenborgh,Bruno J. C. Vieira,Pilar Hernández‐Muñoz,Rafael Gavara,Mónica Giménez‐Marqués
标识
DOI:10.1021/acsami.1c21555
摘要
The design of efficient food contact materials that maintain optimal levels of food safety is of paramount relevance to reduce the increasing number of foodborne illnesses. In this work, we develop a smart composite metal-organic framework (MOF)-based material that fosters a unique prolonged antibacterial activity. The composite is obtained by entrapping a natural food preserving molecule, carvacrol, into a mesoporous MIL-100(Fe) material following a direct and biocompatible impregnation method, and obtaining particularly high payloads. By exploiting the intrinsic redox nature of the MIL-100(Fe) material, it is possible to achieve a prolonged activity against Escherichia coli and Listeria innocua due to a triggered two-step carvacrol release from films containing the carvacrol@MOF composite. Essentially, it was discovered that based on the underlying chemical interaction between MIL-100(Fe) and carvacrol, it is possible to undergo a reversible charge-transfer process between the metallic MOF counterpart and carvacrol upon certain chemical stimuli. During this process, the preferred carvacrol binding site was monitored by infrared, Mössbauer, and electron paramagnetic resonance spectroscopies, and the results are supported by theoretical calculations.
科研通智能强力驱动
Strongly Powered by AbleSci AI