Deep learning-based automated tool for diagnosing diabetic peripheral neuropathy

周围神经病变 医学 外围设备 糖尿病神经病变 计算机科学 人工智能 糖尿病 机器学习 内科学 内分泌学
作者
Qincheng Qiao,Juan Cao,Wen Xue,Jin Qian,Chuan Wang,Qi Pan,Bin Lu,Qian Xiong,Li Chen,Xinguo Hou
出处
期刊:Digital health [SAGE]
卷期号:10
标识
DOI:10.1177/20552076241307573
摘要

Background Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, and its early identification is crucial for improving patient outcomes. Corneal confocal microscopy (CCM) can non-invasively detect changes in corneal nerve fibers (CNFs), making it a potential tool for the early diagnosis of DPN. However, the existing CNF analysis methods have certain limitations, highlighting the need to develop a reliable automated analysis tool. Methods This study is based on data from two independent clinical centers. Various popular deep learning (DL) models have been trained and evaluated for their performance in CCM image segmentation using DL-based image segmentation techniques. Subsequently, an image processing algorithm was designed to automatically extract and quantify various morphological parameters of CNFs. To validate the effectiveness of this tool, it was compared with manually annotated datasets and ACCMetrics, and the consistency of the results was assessed using Bland­–Altman analysis and intraclass correlation coefficient (ICC). Results The U2Net model performed the best in the CCM image segmentation task, achieving a mean Intersection over Union (mIoU) of 0.8115. The automated analysis tool based on U2Net demonstrated a significantly higher consistency with the manually annotated results in the quantitative analysis of various CNF morphological parameters than the previously popular automated tool ACCMetrics. The area under the curve for classifying DPN using the CNF morphology parameters calculated by this tool reached 0.75. Conclusions The DL-based automated tool developed in this study can effectively segment and quantify the CNF parameters in CCM images. This tool has the potential to be used for the early diagnosis of DPN, and further research will help validate its practical application value in clinical settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一期一会完成签到,获得积分10
1秒前
自由马丁发布了新的文献求助10
1秒前
Alin完成签到,获得积分10
1秒前
2秒前
搜集达人应助负责冰烟采纳,获得10
3秒前
酥小苏发布了新的文献求助30
3秒前
小马甲应助开朗发卡采纳,获得10
3秒前
4秒前
4秒前
Enting给Enting的求助进行了留言
4秒前
古希腊掌管科研的神完成签到,获得积分10
5秒前
NXK完成签到,获得积分10
5秒前
5秒前
晨许沫光完成签到,获得积分10
6秒前
竹心蜓发布了新的文献求助10
6秒前
坚定的雁菱完成签到,获得积分10
7秒前
静穆儿完成签到,获得积分10
7秒前
7秒前
7秒前
迟大猫应助NXK采纳,获得10
9秒前
9秒前
研友_VZG7GZ应助星星采纳,获得10
9秒前
9秒前
杳鸢应助DHL采纳,获得10
9秒前
九七完成签到,获得积分10
10秒前
10秒前
10秒前
April发布了新的文献求助10
10秒前
凡事看开点完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
白明发布了新的文献求助30
11秒前
11秒前
11秒前
Orange应助折木浮华采纳,获得10
12秒前
poyo完成签到,获得积分10
12秒前
宋丽娟发布了新的文献求助100
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3513100
求助须知:如何正确求助?哪些是违规求助? 3095396
关于积分的说明 9228208
捐赠科研通 2790483
什么是DOI,文献DOI怎么找? 1531264
邀请新用户注册赠送积分活动 711354
科研通“疑难数据库(出版商)”最低求助积分说明 706766