A robust neural network model for fault detection in the presence of mislabelled data

人工神经网络 故障检测与隔离 计算机科学 断层(地质) 人工智能 数据挖掘 可靠性工程 机器学习 工程类 地震学 地质学 执行机构
作者
Mohammad Alauddin,Faisal Khan,Syed Imtiaz,Salim Ahmed,Paul Amyotte
出处
期刊:Canadian Journal of Chemical Engineering [Wiley]
卷期号:102 (4): 1368-1380 被引量:8
标识
DOI:10.1002/cjce.25181
摘要

Abstract Several data‐driven methodologies for process monitoring and detection of faults or abnormalities have been developed for the safety of processing systems. The effectiveness of data‐based models, however, is impacted by the volume and quality of training data. This work presents a robust neural network model for addressing the mislabelled and low‐quality data in detecting faults and process abnormalities. The approach is based on harnessing data quality features along with supervisory labels in the network training. The data quality has been computed using the Mahalanobis distances and trusted centres of each class of data such as normal and faulty data. The method has been examined for detecting abnormalities in two case studies; a continuous stirred tank heater problem for detecting leaks and the Tennessee Eastman chemical process for detecting step and sticking faults. The performance of the proposed robust artificial neural networks (ANN) model is evaluated in terms of accuracy, fault detection rate, false alarm rate, and classification index at varying extents of mislabelling, namely, 1%, 5%, and 10% mislabelled data. The proposed model demonstrates higher detection performance, especially at increased labels of mislabelled data where the performance of the conventional ANN is severely impacted. The proposed methodology can be advantageous in handling mislabelled and low‐quality data issues which are crucial in the data‐driven modelling of processing systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Jasper应助天天采纳,获得10
1秒前
wzk完成签到,获得积分10
3秒前
4秒前
LaixS完成签到,获得积分10
5秒前
害羞的秋寒完成签到,获得积分10
6秒前
迷人绿柏完成签到 ,获得积分10
6秒前
要笑cc完成签到,获得积分10
7秒前
宣宣宣0733完成签到,获得积分10
9秒前
风起枫落完成签到 ,获得积分0
9秒前
丘比特应助天天采纳,获得10
10秒前
11秒前
胡质斌完成签到,获得积分10
11秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
14秒前
16秒前
19秒前
冷傲半邪发布了新的文献求助10
19秒前
小蘑菇应助天天采纳,获得10
20秒前
燕荣完成签到 ,获得积分10
22秒前
慈祥的鸣凤完成签到 ,获得积分10
24秒前
cjh发布了新的文献求助10
26秒前
善良的嫣完成签到 ,获得积分10
32秒前
qiancib202完成签到,获得积分0
39秒前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
40秒前
顺心寄容完成签到,获得积分10
57秒前
刘志萍完成签到 ,获得积分10
1分钟前
西柚柠檬完成签到 ,获得积分10
1分钟前
geogydeniel完成签到 ,获得积分10
1分钟前
wanci应助cjh采纳,获得10
1分钟前
lyu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
cjh发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449747
捐赠科研通 4528754
什么是DOI,文献DOI怎么找? 2481677
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438550