A robust neural network model for fault detection in the presence of mislabelled data

人工神经网络 故障检测与隔离 计算机科学 断层(地质) 人工智能 数据挖掘 可靠性工程 机器学习 工程类 地震学 地质学 执行机构
作者
Mohammad Alauddin,Faisal Khan,Syed Imtiaz,Salim Ahmed,Paul Amyotte
出处
期刊:Canadian Journal of Chemical Engineering [Wiley]
卷期号:102 (4): 1368-1380 被引量:8
标识
DOI:10.1002/cjce.25181
摘要

Abstract Several data‐driven methodologies for process monitoring and detection of faults or abnormalities have been developed for the safety of processing systems. The effectiveness of data‐based models, however, is impacted by the volume and quality of training data. This work presents a robust neural network model for addressing the mislabelled and low‐quality data in detecting faults and process abnormalities. The approach is based on harnessing data quality features along with supervisory labels in the network training. The data quality has been computed using the Mahalanobis distances and trusted centres of each class of data such as normal and faulty data. The method has been examined for detecting abnormalities in two case studies; a continuous stirred tank heater problem for detecting leaks and the Tennessee Eastman chemical process for detecting step and sticking faults. The performance of the proposed robust artificial neural networks (ANN) model is evaluated in terms of accuracy, fault detection rate, false alarm rate, and classification index at varying extents of mislabelling, namely, 1%, 5%, and 10% mislabelled data. The proposed model demonstrates higher detection performance, especially at increased labels of mislabelled data where the performance of the conventional ANN is severely impacted. The proposed methodology can be advantageous in handling mislabelled and low‐quality data issues which are crucial in the data‐driven modelling of processing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一瓶罐发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
开心樱发布了新的文献求助10
2秒前
ali完成签到 ,获得积分10
2秒前
3秒前
哆啦B梦发布了新的文献求助10
4秒前
SX发布了新的文献求助10
4秒前
香蕉觅云应助大壮采纳,获得10
6秒前
卢琨发布了新的文献求助10
6秒前
杜不腾完成签到,获得积分10
6秒前
Judy发布了新的文献求助10
6秒前
蒲杨发布了新的文献求助10
7秒前
完美世界应助梅天豪采纳,获得10
7秒前
耍酷的薯片完成签到,获得积分10
8秒前
8秒前
着急的傲菡完成签到,获得积分10
8秒前
FLZLC应助枕安采纳,获得20
8秒前
8秒前
9秒前
Rita应助LAIII采纳,获得10
9秒前
阿晨完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
rowanxiao完成签到,获得积分10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
Yang应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得30
10秒前
浮游应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474258
求助须知:如何正确求助?哪些是违规求助? 4576037
关于积分的说明 14356246
捐赠科研通 4503903
什么是DOI,文献DOI怎么找? 2467852
邀请新用户注册赠送积分活动 1455603
关于科研通互助平台的介绍 1429618