亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A robust neural network model for fault detection in the presence of mislabelled data

人工神经网络 故障检测与隔离 计算机科学 断层(地质) 人工智能 数据挖掘 可靠性工程 机器学习 工程类 地震学 地质学 执行机构
作者
Mohammad Alauddin,Faisal Khan,Syed Imtiaz,Salim Ahmed,Paul Amyotte
出处
期刊:Canadian Journal of Chemical Engineering [Wiley]
卷期号:102 (4): 1368-1380 被引量:8
标识
DOI:10.1002/cjce.25181
摘要

Abstract Several data‐driven methodologies for process monitoring and detection of faults or abnormalities have been developed for the safety of processing systems. The effectiveness of data‐based models, however, is impacted by the volume and quality of training data. This work presents a robust neural network model for addressing the mislabelled and low‐quality data in detecting faults and process abnormalities. The approach is based on harnessing data quality features along with supervisory labels in the network training. The data quality has been computed using the Mahalanobis distances and trusted centres of each class of data such as normal and faulty data. The method has been examined for detecting abnormalities in two case studies; a continuous stirred tank heater problem for detecting leaks and the Tennessee Eastman chemical process for detecting step and sticking faults. The performance of the proposed robust artificial neural networks (ANN) model is evaluated in terms of accuracy, fault detection rate, false alarm rate, and classification index at varying extents of mislabelling, namely, 1%, 5%, and 10% mislabelled data. The proposed model demonstrates higher detection performance, especially at increased labels of mislabelled data where the performance of the conventional ANN is severely impacted. The proposed methodology can be advantageous in handling mislabelled and low‐quality data issues which are crucial in the data‐driven modelling of processing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
呼安完成签到,获得积分10
21秒前
24秒前
cheese发布了新的文献求助10
28秒前
橘橘橘子皮完成签到 ,获得积分10
33秒前
LJL完成签到 ,获得积分10
33秒前
华仔应助HXZ采纳,获得30
34秒前
SciGPT应助Aulorra采纳,获得10
37秒前
深情安青应助科研小白采纳,获得10
37秒前
研友_VZG7GZ应助谦让丹翠采纳,获得10
40秒前
歪歪yyyyc完成签到,获得积分10
41秒前
49秒前
51秒前
WerWu完成签到,获得积分0
52秒前
传奇3应助鲤鱼惮采纳,获得10
55秒前
Ava应助伊斯塔战灵采纳,获得10
56秒前
谢江洋完成签到,获得积分10
57秒前
cheese完成签到,获得积分10
57秒前
lac813发布了新的文献求助10
57秒前
59秒前
养花低手完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
lac813完成签到,获得积分10
1分钟前
科研小白发布了新的文献求助10
1分钟前
Auralis完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
小蘑菇应助火星上的山河采纳,获得10
1分钟前
球球子完成签到,获得积分10
1分钟前
1分钟前
kk完成签到,获得积分10
1分钟前
谦让丹翠发布了新的文献求助10
1分钟前
Ru完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426294
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171650
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164