Accuracy of artificial intelligence‐assisted growth prediction in skeletal Class I preadolescent patients using serial lateral cephalograms for a 2‐year growth interval

卷积神经网络 头影测量 数学 口腔正畸科 计算机科学 医学 人工智能
作者
Amy Larkin,Jun-Sik Kim,Namkug Kim,Seung‐Hak Baek,Shinji Yamada,K. Park,Katsuki Tai,Yoshinobu Yanagi,Jae Hyun Park
出处
期刊:Orthodontics & Craniofacial Research [Wiley]
被引量:1
标识
DOI:10.1111/ocr.12764
摘要

Abstract Objective To investigate the accuracy of artificial intelligence‐assisted growth prediction using a convolutional neural network (CNN) algorithm and longitudinal lateral cephalograms (Lat‐cephs). Materials and Methods A total of 198 Japanese pre‐adolescent children, who had skeletal Class I (C‐I) malocclusion and whose Lat‐cephs were available at age 8 years (T0) and 10 years (T1), were allocated into the training, validation, and test phases (n = 161, n = 17, n = 20). Orthodontists and the CNN model identified 28 hard‐tissue landmarks (HTL) and 19 soft‐tissue landmarks (STL). The mean prediction error (PE) values were defined as ‘excellent,’ ‘very good,’ ‘good,’ ‘acceptable,’ and ‘unsatisfactory’ (criteria: 0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm, respectively). The degree of accurate prediction percentage (APP) was defined as ‘very high,’ ‘high,’ ‘medium,’ and ‘low’ (criteria: 90%, 70%, and 50%, respectively) according to the percentage of subjects that showed the error range within 1.5 mm. Results All HTLs showed acceptable‐to‐excellent mean PE values, while the STLs Pog’, Gn’, and Me’ showed unsatisfactory values, and the rest showed good‐to‐acceptable values. Regarding the degree of APP, HTLs Ba, ramus posterior, Pm, Pog, B‐point, Me, and mandibular first molar root apex exhibited low APPs. The STLs labrale superius, lower embrasure, lower lip, point of lower profile, B′, Pog,’ Gn’ and Me’ also exhibited low APPs. The remainder of HTLs and STLs showed medium‐to‐very high APPs. Conclusion Despite the possibility of using the CNN model to predict growth, further studies are needed to improve the prediction accuracy in HTLs and STLs of the chin area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的凤灵关注了科研通微信公众号
刚刚
刚刚
1秒前
一区作者发布了新的文献求助10
1秒前
Pia唧发布了新的文献求助10
1秒前
于鱼完成签到,获得积分20
2秒前
神明发布了新的文献求助30
2秒前
xh完成签到,获得积分10
3秒前
蜡笔小俽发布了新的文献求助10
3秒前
3秒前
chitin chu完成签到,获得积分10
4秒前
yjwang发布了新的文献求助10
4秒前
小菜鸟完成签到,获得积分10
5秒前
echo发布了新的文献求助30
5秒前
6秒前
小小完成签到 ,获得积分10
7秒前
7秒前
酷波er应助如意冰棍采纳,获得10
8秒前
科研通AI2S应助神明采纳,获得10
8秒前
李健的小迷弟应助神明采纳,获得10
8秒前
9秒前
包子完成签到,获得积分10
11秒前
护理小白发布了新的文献求助10
11秒前
13秒前
Owen应助邵翎365采纳,获得10
13秒前
醉翁完成签到,获得积分10
14秒前
14秒前
BPX发布了新的文献求助10
14秒前
14秒前
吕布完成签到,获得积分10
14秒前
SciGPT应助积极的新柔采纳,获得10
16秒前
16秒前
李健的小迷弟应助hyman采纳,获得10
17秒前
ding应助成就凌兰采纳,获得10
18秒前
情怀应助人间惊鸿采纳,获得10
18秒前
19秒前
zhf发布了新的文献求助10
19秒前
shanshan发布了新的文献求助10
19秒前
一区作者完成签到,获得积分10
20秒前
Waoo发布了新的文献求助30
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123020
求助须知:如何正确求助?哪些是违规求助? 2773567
关于积分的说明 7718302
捐赠科研通 2429164
什么是DOI,文献DOI怎么找? 1290167
科研通“疑难数据库(出版商)”最低求助积分说明 621736
版权声明 600220