Accuracy of artificial intelligence‐assisted growth prediction in skeletal Class I preadolescent patients using serial lateral cephalograms for a 2‐year growth interval

卷积神经网络 头影测量 数学 口腔正畸科 计算机科学 医学 人工智能
作者
Amy Larkin,Jun-Sik Kim,Namkug Kim,Seung‐Hak Baek,Shinji Yamada,K. Park,Katsuki Tai,Yoshinobu Yanagi,Jae Hyun Park
出处
期刊:Orthodontics & Craniofacial Research [Wiley]
被引量:1
标识
DOI:10.1111/ocr.12764
摘要

Abstract Objective To investigate the accuracy of artificial intelligence‐assisted growth prediction using a convolutional neural network (CNN) algorithm and longitudinal lateral cephalograms (Lat‐cephs). Materials and Methods A total of 198 Japanese pre‐adolescent children, who had skeletal Class I (C‐I) malocclusion and whose Lat‐cephs were available at age 8 years (T0) and 10 years (T1), were allocated into the training, validation, and test phases (n = 161, n = 17, n = 20). Orthodontists and the CNN model identified 28 hard‐tissue landmarks (HTL) and 19 soft‐tissue landmarks (STL). The mean prediction error (PE) values were defined as ‘excellent,’ ‘very good,’ ‘good,’ ‘acceptable,’ and ‘unsatisfactory’ (criteria: 0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm, respectively). The degree of accurate prediction percentage (APP) was defined as ‘very high,’ ‘high,’ ‘medium,’ and ‘low’ (criteria: 90%, 70%, and 50%, respectively) according to the percentage of subjects that showed the error range within 1.5 mm. Results All HTLs showed acceptable‐to‐excellent mean PE values, while the STLs Pog’, Gn’, and Me’ showed unsatisfactory values, and the rest showed good‐to‐acceptable values. Regarding the degree of APP, HTLs Ba, ramus posterior, Pm, Pog, B‐point, Me, and mandibular first molar root apex exhibited low APPs. The STLs labrale superius, lower embrasure, lower lip, point of lower profile, B′, Pog,’ Gn’ and Me’ also exhibited low APPs. The remainder of HTLs and STLs showed medium‐to‐very high APPs. Conclusion Despite the possibility of using the CNN model to predict growth, further studies are needed to improve the prediction accuracy in HTLs and STLs of the chin area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
daisy发布了新的文献求助10
5秒前
极光完成签到,获得积分10
5秒前
5秒前
qifeng完成签到,获得积分10
7秒前
吾将上下而求索应助lJH采纳,获得10
7秒前
萧凌雪完成签到,获得积分10
9秒前
小鱼儿发布了新的文献求助10
9秒前
10秒前
10秒前
zzzyyyppp完成签到,获得积分10
10秒前
LL完成签到,获得积分10
12秒前
12秒前
16秒前
HN_litchi_King完成签到,获得积分10
18秒前
lJH完成签到,获得积分10
18秒前
用户5063899完成签到,获得积分10
19秒前
Eirrr发布了新的文献求助10
19秒前
22秒前
东山发布了新的文献求助10
23秒前
ll完成签到,获得积分10
23秒前
24秒前
无花果应助qst采纳,获得10
27秒前
syhjxk完成签到,获得积分10
27秒前
风中道罡发布了新的文献求助10
28秒前
Eirrr完成签到,获得积分10
29秒前
29秒前
惠归尘发布了新的文献求助10
31秒前
搜集达人应助东山采纳,获得10
32秒前
量子星尘发布了新的文献求助10
32秒前
32秒前
无限的山水完成签到 ,获得积分10
32秒前
32秒前
33秒前
33秒前
江三村完成签到 ,获得积分10
34秒前
舌T发布了新的文献求助10
34秒前
ding应助缓慢冬天采纳,获得10
34秒前
爱吃锅巴肉片完成签到,获得积分10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135622
捐赠科研通 3239835
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150