Unlocking Superior Safety, Rate Capability, and Low-Temperature Performances in Lifepo4 Power Batteries

功率(物理) 汽车工程 材料科学 可靠性工程 电气工程 工程类 物理 热力学
作者
Ziyuan Tang,Yating Xiezhang,Qinqin Cai,Zhiyong Xia,Qiurong Chen,Wentao Liang,Jiarong He,Lidan Xing,Weishan Li
标识
DOI:10.2139/ssrn.4713091
摘要

The safety concerns associated with lithium-ion batteries (LIBs) have sparked renewed interest in lithium iron phosphate (LiFePO4) batteries. It is noteworthy that commercially used ester-based electrolytes, although widely adopted, are flammable and fail to fully exploit the high safety potential of LiFePO4. Additionally, the slow Li+ ion diffusion and low electronic conductivity of LiFePO4 batteries limit their utility in high-power applications. Despite the crucial role played by liquid electrolytes in LIBs, achieving simultaneous improvements in safety, rate capability, and low-temperature performance remains a formidable challenge. In this study, we addressed these challenges by innovatively applying a single solvent ethyl vinyl sulfone (EVS) electrolyte to graphite/LiFePO4 batteries. While renowned for its broad electrochemical window, low freezing point and superior safety performance, the EVS electrolyte exhibited compatibility issues with the graphite anode. To overcome this hurdle effectively, we utilized vinylene carbonate as an additive with lower reductive reactivity than EVS to modify the interphase formed by EVS successfully. Simultaneously, the EVS-based electrolyte was found to create a sulfone-rich interphase on the LiFePO4 cathode surface, significantly enhancing Li+ ion diffusion both across the interphase and within the material. These modifications culminated in a conspicuous improvement in the performance of graphite/LiFePO4 batteries. Our study illuminates the potential of EVS-based electrolytes in boosting the rate capability, low-temperature performance, and safety of LiFePO4 power lithium-ion batteries. It yields valuable insights for the design of safer, high-output, and durable LiFePO4 power batteries, marking an important stride in battery technology research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小西完成签到 ,获得积分10
刚刚
顺利的若灵完成签到,获得积分10
刚刚
小棉背心完成签到 ,获得积分10
刚刚
阿九发布了新的文献求助10
1秒前
嘻嘻完成签到 ,获得积分10
1秒前
淘宝叮咚完成签到,获得积分10
1秒前
SYLH应助网安小趴菜采纳,获得20
1秒前
地学韦丰吉司长完成签到,获得积分10
2秒前
易槐完成签到,获得积分10
2秒前
3秒前
4秒前
5秒前
胖豆完成签到,获得积分10
5秒前
5秒前
西红适发布了新的文献求助10
5秒前
如故完成签到,获得积分10
5秒前
娜娜lalala发布了新的文献求助10
5秒前
坚强怀绿完成签到,获得积分10
5秒前
雪ノ下詩乃完成签到,获得积分10
6秒前
阿九完成签到,获得积分10
6秒前
ENG完成签到,获得积分10
6秒前
Snoopy完成签到,获得积分10
6秒前
6秒前
可罗雀完成签到,获得积分10
7秒前
风中的冰蓝完成签到,获得积分10
7秒前
法码完成签到,获得积分20
7秒前
wubinbin完成签到 ,获得积分10
8秒前
yuncong323发布了新的文献求助10
8秒前
神圣先知完成签到,获得积分10
9秒前
9秒前
1117完成签到 ,获得积分10
10秒前
法码发布了新的文献求助10
10秒前
白爪发布了新的文献求助10
11秒前
11秒前
三笠完成签到,获得积分20
12秒前
99完成签到,获得积分10
14秒前
by完成签到,获得积分20
14秒前
野原完成签到,获得积分10
14秒前
TT完成签到 ,获得积分10
15秒前
手帕很忙完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910