Unsupervised Underwater Image Enhancement Based on Disentangled Representations via Double-Order Contrastive Loss

计算机科学 水下 一般化 人工智能 失真(音乐) 对比度(视觉) 约束(计算机辅助设计) 图像(数学) 模式识别(心理学) 合成数据 机器学习 数学 地质学 带宽(计算) 放大器 数学分析 几何学 海洋学 计算机网络
作者
Jiankai Yin,Yan Wang,Bowen Guan,Xianchao Zeng,Lei Guo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:4
标识
DOI:10.1109/tgrs.2024.3353371
摘要

Images captured in underwater environments often suffer from color distortion, low contrast, and reduced visual quality. Most existing methods solve underwater image enhancement (UIE) by applying supervised training on synthetic images or pseudo references. However, the synthetic paired data fail to accurately replicate real-world data due to the inherent differences, and the quantity and quality of pseudo references are limited, which seriously reduces the generalization ability and performance of the model when testing on real underwater images. In contrast, unsupervised-based method is not constrained by paired data, which is more robust and potentially more promising for practical applications. Nevertheless, existing unsupervised-based methods cannot effectively constrain the network to train a model that can adapt to various degradation. Inspired by the fact that people often resolve problems from opposing but complementary perspectives, we maintain that there is implicit cooperation between the removal and generation of water layers, as they can constrain and promote each other at the same time. Based on the above analysis, a new unsupervised-based UIE framework that jointly learns water layer generation and removal based on disentangled representations is proposed. Specifically, we propose a bidirectional disentangling network in which each unidirectional network contains a loop consisting of water layer removal and generation, and restricts the image to remain consistent after a loop. Meanwhile, a novel double-order contrastive loss is proposed to improve the ability of disentanglement by utilizing the joint implicit constraint of first-order features and second-order features. Extensive experimental results demonstrate that the model outperforms the state-of-the-art methods in both qualitative and quantitative evaluation with a relatively high processing speed. The experimental results of the ablation study demonstrate the usefulness of the various components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZaZa完成签到,获得积分10
刚刚
Ray羽曦~发布了新的文献求助10
刚刚
沛蓝关注了科研通微信公众号
1秒前
舒适的书竹关注了科研通微信公众号
1秒前
共享精神应助调皮万宝路采纳,获得10
1秒前
李健的粉丝团团长应助ZORA采纳,获得10
1秒前
2秒前
谦让大娘发布了新的文献求助10
2秒前
乘风破浪发布了新的文献求助10
2秒前
TINASURE发布了新的文献求助10
2秒前
3秒前
dou发布了新的文献求助10
3秒前
ZZzz完成签到,获得积分10
3秒前
完美世界应助多多发SCI采纳,获得10
4秒前
5秒前
SHAO应助可乐采纳,获得10
5秒前
caffeine应助孙行者采纳,获得10
5秒前
Ava应助伶俐皮卡丘采纳,获得10
6秒前
6秒前
6秒前
xyf完成签到,获得积分10
7秒前
kecheng应助苦哈哈采纳,获得10
7秒前
zy177发布了新的文献求助10
7秒前
7秒前
7秒前
星辰大海应助ling采纳,获得10
8秒前
8秒前
深情安青应助dzbb采纳,获得10
9秒前
9秒前
TINASURE完成签到,获得积分20
9秒前
AbeleChuang完成签到,获得积分10
9秒前
羊羊羊完成签到 ,获得积分10
10秒前
xiongzi发布了新的文献求助10
10秒前
科研公主完成签到,获得积分10
10秒前
砂糖发布了新的文献求助10
10秒前
情怀应助zy177采纳,获得10
12秒前
12秒前
典雅的静发布了新的文献求助10
12秒前
zjm完成签到 ,获得积分20
13秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978729
求助须知:如何正确求助?哪些是违规求助? 3522741
关于积分的说明 11214658
捐赠科研通 3260224
什么是DOI,文献DOI怎么找? 1799815
邀请新用户注册赠送积分活动 878676
科研通“疑难数据库(出版商)”最低求助积分说明 807052