Unsupervised Underwater Image Enhancement Based on Disentangled Representations via Double-Order Contrastive Loss

计算机科学 水下 一般化 人工智能 失真(音乐) 对比度(视觉) 约束(计算机辅助设计) 图像(数学) 模式识别(心理学) 合成数据 机器学习 数学 数学分析 放大器 计算机网络 海洋学 几何学 带宽(计算) 地质学
作者
Jiankai Yin,Yan Wang,Bowen Guan,Xianchao Zeng,Lei Guo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2024.3353371
摘要

Images captured in underwater environments often suffer from color distortion, low contrast, and reduced visual quality. Most existing methods solve underwater image enhancement (UIE) by applying supervised training on synthetic images or pseudo references. However, the synthetic paired data fail to accurately replicate real-world data due to the inherent differences, and the quantity and quality of pseudo references are limited, which seriously reduces the generalization ability and performance of the model when testing on real underwater images. In contrast, unsupervised-based method is not constrained by paired data, which is more robust and potentially more promising for practical applications. Nevertheless, existing unsupervised-based methods cannot effectively constrain the network to train a model that can adapt to various degradation. Inspired by the fact that people often resolve problems from opposing but complementary perspectives, we maintain that there is implicit cooperation between the removal and generation of water layers, as they can constrain and promote each other at the same time. Based on the above analysis, a new unsupervised-based UIE framework that jointly learns water layer generation and removal based on disentangled representations is proposed. Specifically, we propose a bidirectional disentangling network in which each unidirectional network contains a loop consisting of water layer removal and generation, and restricts the image to remain consistent after a loop. Meanwhile, a novel double-order contrastive loss is proposed to improve the ability of disentanglement by utilizing the joint implicit constraint of first-order features and second-order features. Extensive experimental results demonstrate that the model outperforms the state-of-the-art methods in both qualitative and quantitative evaluation with a relatively high processing speed. The experimental results of the ablation study demonstrate the usefulness of the various components.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助陈爱佳采纳,获得10
刚刚
喜悦豌豆完成签到,获得积分10
1秒前
感叹号发布了新的文献求助10
3秒前
mj完成签到,获得积分10
3秒前
xx完成签到,获得积分20
4秒前
4秒前
一张不够花完成签到 ,获得积分10
5秒前
可爱的函函应助WEN采纳,获得10
7秒前
7秒前
8秒前
9秒前
Johnny完成签到,获得积分20
10秒前
聪明的晓槐完成签到,获得积分10
11秒前
高贵紫丝发布了新的文献求助10
11秒前
陈爱佳完成签到,获得积分10
11秒前
倾听发布了新的文献求助30
12秒前
我是老大应助wang采纳,获得10
13秒前
13秒前
端庄斑马完成签到,获得积分10
14秒前
爱听歌寄云完成签到 ,获得积分10
14秒前
15秒前
陈爱佳发布了新的文献求助10
15秒前
big ben完成签到 ,获得积分10
17秒前
yuan发布了新的文献求助10
17秒前
bei发布了新的文献求助10
18秒前
19秒前
感叹号完成签到 ,获得积分10
19秒前
21秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
大模型应助科研通管家采纳,获得10
23秒前
子车茗应助科研通管家采纳,获得20
23秒前
24秒前
25秒前
25秒前
噼里啪啦完成签到,获得积分10
25秒前
SciGPT应助啦啦采纳,获得10
25秒前
Mingda完成签到,获得积分10
28秒前
风趣的惜天完成签到 ,获得积分10
29秒前
华仔应助luoluoluo采纳,获得10
29秒前
扬帆起航发布了新的文献求助10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312235
求助须知:如何正确求助?哪些是违规求助? 2944833
关于积分的说明 8521765
捐赠科研通 2620550
什么是DOI,文献DOI怎么找? 1432948
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650134