OPGW positioning and early warning method based on a Brillouin distributed optical fiber sensor and machine learning

布里渊区 计算机科学 反射计 光纤 数据库扫描 光纤传感器 聚类分析 分布式声传感 时域 极限学习机 支持向量机 声学 光学 人工智能 人工神经网络 物理 计算机视觉 电信 相关聚类 树冠聚类算法
作者
Meng Xia,Xiaohui Tang,Ying Wang,Can Li,Yong Wei,Jiaju Zhang,Taofei Jiang,Yongkang Dong
出处
期刊:Applied Optics [The Optical Society]
卷期号:62 (6): 1557-1557 被引量:4
标识
DOI:10.1364/ao.479772
摘要

A method of optical fiber composite overhead ground wire (OPGW) positioning based on a Brillouin distributed optical fiber sensor and machine learning is proposed. A distributed Brillouin optical time-domain reflectometry (BOTDR) and Brillouin optical time-domain analyzer (BOTDA) are designed, where the ranges of BOTDR and the BOTDA are 110 km and 125 km, respectively. An unsupervised machine learning method density-based spatial clustering of applications with noise (DBSCAN) is proposed to automatically identify the splicing point based on the Brillouin frequency shift (BFS) difference of adjacent sections. An adaptive parameter selection method based on k-distance is adapted to overcome the parameter sensitivity. The validity of the proposed DBSCAN algorithm is greater than 96%, which is evaluated by three commonly external validation indices with five typical BFS curves. According to the clustering results of different fiber cores and the tower schedule of the OPGW, the connecting towers are distinguished, which is proved as a 100% recognition rate. According to the identification results of different fiber cores of both the OPGW cables and tower schedule, the connecting towers can be distinguished, and the distributed strain information is extracted directly from the BFS to strain. The abnormal region is positioned and warned according to the distributed strain measurements. The method proposed herein significantly improves the efficiency of fault positioning and early warning, which means a higher operational reliability of the OPGW cables.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
odk发布了新的文献求助10
1秒前
蚊蚊爱读书应助Wake采纳,获得10
1秒前
mookie发布了新的文献求助10
1秒前
qingzhou发布了新的文献求助10
1秒前
1秒前
2秒前
彩色如南发布了新的文献求助10
2秒前
2秒前
lemon发布了新的文献求助10
3秒前
千与发布了新的文献求助10
3秒前
耿周周完成签到,获得积分10
3秒前
刘万根发布了新的文献求助10
3秒前
齐天小圣发布了新的文献求助10
3秒前
科目三应助神奇的蘑菇采纳,获得10
4秒前
4秒前
Orange应助山复尔尔采纳,获得10
4秒前
大模型应助空格TNT采纳,获得10
5秒前
南宫清涟应助昏睡的蟠桃采纳,获得10
5秒前
5秒前
Owen应助稳重盼夏采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
思源应助Sun采纳,获得10
7秒前
彼岸花开发布了新的文献求助20
7秒前
7秒前
无聊的羊发布了新的文献求助10
8秒前
天天下文献完成签到 ,获得积分10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得50
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
8秒前
研友_8QyXr8完成签到,获得积分10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593281
求助须知:如何正确求助?哪些是违规求助? 4679223
关于积分的说明 14808834
捐赠科研通 4643607
什么是DOI,文献DOI怎么找? 2534406
邀请新用户注册赠送积分活动 1502418
关于科研通互助平台的介绍 1469329