OPGW positioning and early warning method based on a Brillouin distributed optical fiber sensor and machine learning

布里渊区 计算机科学 反射计 光纤 数据库扫描 光纤传感器 聚类分析 分布式声传感 时域 极限学习机 支持向量机 声学 光学 人工智能 人工神经网络 物理 计算机视觉 电信 树冠聚类算法 相关聚类
作者
Meng Xia,Xiaohui Tang,Ying Wang,Can Li,Yong Wei,Jiaju Zhang,Taofei Jiang,Yongkang Dong
出处
期刊:Applied Optics [The Optical Society]
卷期号:62 (6): 1557-1557 被引量:4
标识
DOI:10.1364/ao.479772
摘要

A method of optical fiber composite overhead ground wire (OPGW) positioning based on a Brillouin distributed optical fiber sensor and machine learning is proposed. A distributed Brillouin optical time-domain reflectometry (BOTDR) and Brillouin optical time-domain analyzer (BOTDA) are designed, where the ranges of BOTDR and the BOTDA are 110 km and 125 km, respectively. An unsupervised machine learning method density-based spatial clustering of applications with noise (DBSCAN) is proposed to automatically identify the splicing point based on the Brillouin frequency shift (BFS) difference of adjacent sections. An adaptive parameter selection method based on k-distance is adapted to overcome the parameter sensitivity. The validity of the proposed DBSCAN algorithm is greater than 96%, which is evaluated by three commonly external validation indices with five typical BFS curves. According to the clustering results of different fiber cores and the tower schedule of the OPGW, the connecting towers are distinguished, which is proved as a 100% recognition rate. According to the identification results of different fiber cores of both the OPGW cables and tower schedule, the connecting towers can be distinguished, and the distributed strain information is extracted directly from the BFS to strain. The abnormal region is positioned and warned according to the distributed strain measurements. The method proposed herein significantly improves the efficiency of fault positioning and early warning, which means a higher operational reliability of the OPGW cables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只橘子完成签到 ,获得积分10
刚刚
1秒前
韭黄发布了新的文献求助10
1秒前
西瓜发布了新的文献求助10
1秒前
Ll发布了新的文献求助10
1秒前
1秒前
wcy关注了科研通微信公众号
1秒前
2秒前
2秒前
CipherSage应助爱喝冰可乐采纳,获得10
3秒前
3秒前
bdvdsrwteges完成签到,获得积分10
3秒前
鱼雷完成签到,获得积分10
4秒前
4秒前
天天快乐应助喜洋洋采纳,获得10
4秒前
PANSIXUAN完成签到 ,获得积分10
5秒前
善良香岚发布了新的文献求助10
5秒前
5秒前
huizi完成签到,获得积分20
5秒前
RichardZ完成签到,获得积分10
5秒前
5秒前
左左发布了新的文献求助10
6秒前
执着的怜寒应助哈哈哈haha采纳,获得40
6秒前
Cassie完成签到 ,获得积分10
7秒前
7秒前
雄i完成签到,获得积分10
7秒前
Chenly完成签到,获得积分10
8秒前
科目三应助韭黄采纳,获得10
8秒前
8秒前
轻松笙发布了新的文献求助10
8秒前
10秒前
10秒前
a1oft发布了新的文献求助10
11秒前
觅桃乌龙完成签到,获得积分10
11秒前
12秒前
melodyezi发布了新的文献求助10
13秒前
13秒前
FFFFFFF应助柚子采纳,获得10
13秒前
9℃发布了新的文献求助10
13秒前
MailkMonk发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759