OPGW positioning and early warning method based on a Brillouin distributed optical fiber sensor and machine learning

布里渊区 计算机科学 反射计 光纤 数据库扫描 光纤传感器 聚类分析 分布式声传感 时域 极限学习机 支持向量机 声学 光学 人工智能 人工神经网络 物理 计算机视觉 电信 树冠聚类算法 相关聚类
作者
Meng Xia,Xiaohui Tang,Ying Wang,Can Li,Yong Wei,Jiaju Zhang,Taofei Jiang,Yongkang Dong
出处
期刊:Applied Optics [The Optical Society]
卷期号:62 (6): 1557-1557 被引量:4
标识
DOI:10.1364/ao.479772
摘要

A method of optical fiber composite overhead ground wire (OPGW) positioning based on a Brillouin distributed optical fiber sensor and machine learning is proposed. A distributed Brillouin optical time-domain reflectometry (BOTDR) and Brillouin optical time-domain analyzer (BOTDA) are designed, where the ranges of BOTDR and the BOTDA are 110 km and 125 km, respectively. An unsupervised machine learning method density-based spatial clustering of applications with noise (DBSCAN) is proposed to automatically identify the splicing point based on the Brillouin frequency shift (BFS) difference of adjacent sections. An adaptive parameter selection method based on k-distance is adapted to overcome the parameter sensitivity. The validity of the proposed DBSCAN algorithm is greater than 96%, which is evaluated by three commonly external validation indices with five typical BFS curves. According to the clustering results of different fiber cores and the tower schedule of the OPGW, the connecting towers are distinguished, which is proved as a 100% recognition rate. According to the identification results of different fiber cores of both the OPGW cables and tower schedule, the connecting towers can be distinguished, and the distributed strain information is extracted directly from the BFS to strain. The abnormal region is positioned and warned according to the distributed strain measurements. The method proposed herein significantly improves the efficiency of fault positioning and early warning, which means a higher operational reliability of the OPGW cables.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
攀攀发布了新的文献求助10
刚刚
刚刚
bkagyin应助王皮皮采纳,获得10
1秒前
1秒前
Tracy发布了新的文献求助10
1秒前
小猴子发布了新的文献求助10
1秒前
orixero应助小满采纳,获得10
2秒前
Criminology34应助可乐采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
ABC应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
yuuuuu2023发布了新的文献求助10
2秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
DREAM应助科研通管家采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
精明人达应助科研通管家采纳,获得10
3秒前
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得30
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得30
3秒前
spc68应助科研通管家采纳,获得10
3秒前
刘欢完成签到,获得积分10
3秒前
PP超人发布了新的文献求助10
4秒前
田様应助科研通管家采纳,获得10
4秒前
千九发布了新的文献求助10
4秒前
田様应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709965
求助须知:如何正确求助?哪些是违规求助? 5197278
关于积分的说明 15259048
捐赠科研通 4862632
什么是DOI,文献DOI怎么找? 2610241
邀请新用户注册赠送积分活动 1560564
关于科研通互助平台的介绍 1518245