计算机科学
追踪
任务(项目管理)
人工智能
图形
依赖关系(UML)
对偶(语法数字)
机器学习
效率低下
依赖关系图
理论计算机科学
文学类
操作系统
艺术
经济
微观经济学
管理
标识
DOI:10.1016/j.eswa.2023.120212
摘要
Recently the large-scale influence of Covid-19 promoted the fast development of intelligent tutoring systems (ITS). As a major task of ITS, Knowledge Tracing (KT) aims to capture a student’s dynamic knowledge state based on his historical response sequences and provide personalized learning assistance to him. However, most existing KT methods have encountered the data sparsity problem. In real scenarios, an online tutoring system usually has an extensive collection of questions while each student can only interact with a limited number of questions. As a result, the records of some questions could be extremely sparse, which degrades the performance of traditional KT models. To resolve this issue, we propose a Dual-channel Heterogeneous Graph Network (DHGN) to learn informative representations of questions from students’ records by capturing both the high-order heterogeneous and local relations. As the supervised learning manner applied in previous methods is incapable of exploiting unobserved relations between questions, we innovatively integrate a self-supervised framework into the KT task and employ contrastive learning via the two channels of DHGN, supplementing as an auxiliary task to improve the KT performance. Moreover, we adopt the attention mechanism, which has achieved impressive performance in natural language processing tasks, to effectively capture students’ knowledge state. But the standard attention network is inapplicable to the KT task because the current knowledge state of a student usually shows strong dependency on his recently interactive questions, unlike the situation of language processing tasks, which focus more on the long-term dependency. To avoid the inefficiency of standard attention networks in the KT task, we further devise a novel Hybrid Attentive Network (HAN), which produces both the global attention and the hierarchical local attention to model the long-term and short-term intents, respectively. Then, by the gating network, a student’s long-term and short-term intents are combined for efficient prediction. We conduct extensive experiments on several real-world datasets. Experimental results demonstrate that our proposed methods achieve significant performance improvement compared to existing state-of-the-art baselines, which validates the effectiveness of the proposed dual-channel heterogeneous graph framework and hybrid attentive network.
科研通智能强力驱动
Strongly Powered by AbleSci AI