亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fusing hybrid attentive network with self-supervised dual-channel heterogeneous graph for knowledge tracing

计算机科学 追踪 任务(项目管理) 人工智能 图形 依赖关系(UML) 对偶(语法数字) 机器学习 效率低下 依赖关系图 理论计算机科学 艺术 文学类 操作系统 管理 经济 微观经济学
作者
Tangjie Wu,Qiang Ling
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:225: 120212-120212 被引量:9
标识
DOI:10.1016/j.eswa.2023.120212
摘要

Recently the large-scale influence of Covid-19 promoted the fast development of intelligent tutoring systems (ITS). As a major task of ITS, Knowledge Tracing (KT) aims to capture a student’s dynamic knowledge state based on his historical response sequences and provide personalized learning assistance to him. However, most existing KT methods have encountered the data sparsity problem. In real scenarios, an online tutoring system usually has an extensive collection of questions while each student can only interact with a limited number of questions. As a result, the records of some questions could be extremely sparse, which degrades the performance of traditional KT models. To resolve this issue, we propose a Dual-channel Heterogeneous Graph Network (DHGN) to learn informative representations of questions from students’ records by capturing both the high-order heterogeneous and local relations. As the supervised learning manner applied in previous methods is incapable of exploiting unobserved relations between questions, we innovatively integrate a self-supervised framework into the KT task and employ contrastive learning via the two channels of DHGN, supplementing as an auxiliary task to improve the KT performance. Moreover, we adopt the attention mechanism, which has achieved impressive performance in natural language processing tasks, to effectively capture students’ knowledge state. But the standard attention network is inapplicable to the KT task because the current knowledge state of a student usually shows strong dependency on his recently interactive questions, unlike the situation of language processing tasks, which focus more on the long-term dependency. To avoid the inefficiency of standard attention networks in the KT task, we further devise a novel Hybrid Attentive Network (HAN), which produces both the global attention and the hierarchical local attention to model the long-term and short-term intents, respectively. Then, by the gating network, a student’s long-term and short-term intents are combined for efficient prediction. We conduct extensive experiments on several real-world datasets. Experimental results demonstrate that our proposed methods achieve significant performance improvement compared to existing state-of-the-art baselines, which validates the effectiveness of the proposed dual-channel heterogeneous graph framework and hybrid attentive network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助科研通管家采纳,获得10
1秒前
morena应助科研通管家采纳,获得30
2秒前
andrele应助科研通管家采纳,获得10
2秒前
KUIWU发布了新的文献求助10
2秒前
上善若水完成签到,获得积分10
2秒前
5秒前
zkexuan发布了新的文献求助10
5秒前
Yangqx007发布了新的文献求助10
5秒前
16秒前
123发布了新的文献求助10
17秒前
20秒前
20秒前
123发布了新的文献求助10
23秒前
FashionBoy应助魁梧的盼雁采纳,获得10
25秒前
手术刀完成签到 ,获得积分10
28秒前
木有完成签到 ,获得积分10
28秒前
28秒前
35秒前
36秒前
英俊的铭应助zkexuan采纳,获得10
42秒前
42秒前
gwh完成签到 ,获得积分10
45秒前
46秒前
zkexuan发布了新的文献求助10
52秒前
54秒前
激昂的如柏完成签到,获得积分10
57秒前
59秒前
英俊的铭应助世界需要我采纳,获得10
1分钟前
Pattis完成签到 ,获得积分10
1分钟前
结实青丝完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
zkexuan完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
心灵美的不斜完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739185
求助须知:如何正确求助?哪些是违规求助? 5384771
关于积分的说明 15339560
捐赠科研通 4881864
什么是DOI,文献DOI怎么找? 2623991
邀请新用户注册赠送积分活动 1572663
关于科研通互助平台的介绍 1529419