Fusing hybrid attentive network with self-supervised dual-channel heterogeneous graph for knowledge tracing

计算机科学 追踪 任务(项目管理) 人工智能 图形 依赖关系(UML) 对偶(语法数字) 机器学习 效率低下 依赖关系图 理论计算机科学 文学类 操作系统 艺术 经济 微观经济学 管理
作者
Tangjie Wu,Qiang Ling
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:225: 120212-120212 被引量:7
标识
DOI:10.1016/j.eswa.2023.120212
摘要

Recently the large-scale influence of Covid-19 promoted the fast development of intelligent tutoring systems (ITS). As a major task of ITS, Knowledge Tracing (KT) aims to capture a student’s dynamic knowledge state based on his historical response sequences and provide personalized learning assistance to him. However, most existing KT methods have encountered the data sparsity problem. In real scenarios, an online tutoring system usually has an extensive collection of questions while each student can only interact with a limited number of questions. As a result, the records of some questions could be extremely sparse, which degrades the performance of traditional KT models. To resolve this issue, we propose a Dual-channel Heterogeneous Graph Network (DHGN) to learn informative representations of questions from students’ records by capturing both the high-order heterogeneous and local relations. As the supervised learning manner applied in previous methods is incapable of exploiting unobserved relations between questions, we innovatively integrate a self-supervised framework into the KT task and employ contrastive learning via the two channels of DHGN, supplementing as an auxiliary task to improve the KT performance. Moreover, we adopt the attention mechanism, which has achieved impressive performance in natural language processing tasks, to effectively capture students’ knowledge state. But the standard attention network is inapplicable to the KT task because the current knowledge state of a student usually shows strong dependency on his recently interactive questions, unlike the situation of language processing tasks, which focus more on the long-term dependency. To avoid the inefficiency of standard attention networks in the KT task, we further devise a novel Hybrid Attentive Network (HAN), which produces both the global attention and the hierarchical local attention to model the long-term and short-term intents, respectively. Then, by the gating network, a student’s long-term and short-term intents are combined for efficient prediction. We conduct extensive experiments on several real-world datasets. Experimental results demonstrate that our proposed methods achieve significant performance improvement compared to existing state-of-the-art baselines, which validates the effectiveness of the proposed dual-channel heterogeneous graph framework and hybrid attentive network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助喜欢玩辅助采纳,获得10
刚刚
强仔完成签到,获得积分10
1秒前
检测王发布了新的文献求助10
1秒前
LiuLiu发布了新的文献求助10
2秒前
Wuin完成签到,获得积分10
3秒前
糟糕的学姐完成签到 ,获得积分10
4秒前
丘比特应助...采纳,获得10
5秒前
小马甲应助还不错采纳,获得10
5秒前
wang发布了新的文献求助10
6秒前
rtaxa完成签到,获得积分0
7秒前
7秒前
无花果应助检测王采纳,获得10
8秒前
子车茗应助Molly采纳,获得10
8秒前
MKY完成签到,获得积分10
9秒前
10秒前
Limpidly完成签到,获得积分10
10秒前
杨振发布了新的文献求助10
10秒前
脑洞疼应助炙热的桐采纳,获得10
12秒前
勤劳雁桃完成签到,获得积分10
12秒前
世隐发布了新的文献求助10
12秒前
Surly完成签到,获得积分10
12秒前
傲娇的从露完成签到,获得积分10
13秒前
无情芝麻完成签到,获得积分10
13秒前
因你常乐完成签到,获得积分10
13秒前
科研通AI2S应助阿黎采纳,获得10
13秒前
孤烟完成签到,获得积分10
13秒前
贰鸟应助瘦瘦的寒珊采纳,获得20
14秒前
14秒前
还不错完成签到,获得积分10
15秒前
共享精神应助安和桥北采纳,获得10
16秒前
Nvq完成签到 ,获得积分20
17秒前
曲奇饼干发布了新的文献求助10
17秒前
DX发布了新的文献求助20
17秒前
松原花音完成签到,获得积分10
17秒前
Hello应助是漏漏呀采纳,获得10
18秒前
番薯关注了科研通微信公众号
19秒前
19秒前
世隐完成签到,获得积分10
19秒前
Lucas应助sherry采纳,获得10
19秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148856
求助须知:如何正确求助?哪些是违规求助? 2799869
关于积分的说明 7837518
捐赠科研通 2457441
什么是DOI,文献DOI怎么找? 1307837
科研通“疑难数据库(出版商)”最低求助积分说明 628280
版权声明 601685