Learning Heavily-Degraded Prior for Underwater Object Detection

计算机科学 水下 人工智能 探测器 目标检测 特征提取 计算机视觉 边距(机器学习) 特征(语言学) 图像质量 模式识别(心理学) 图像(数学) 机器学习 电信 海洋学 地质学 哲学 语言学
作者
Chenping Fu,Xin Fan,Jiewen Xiao,Wanqi Yuan,Risheng Liu,Zhongxuan Luo
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (11): 6887-6896 被引量:15
标识
DOI:10.1109/tcsvt.2023.3271644
摘要

Underwater object detection suffers from low detection performance because the distance and wavelength dependent imaging process yield evident image quality degradations such as haze-like effects, low visibility, and color distortions. Therefore, we commit to resolving the issue of underwater object detection with compounded environmental degradations. Typical approaches attempt to develop sophisticated deep architecture to generate high-quality images or features. However, these methods are only work for limited ranges because imaging factors are either unstable, too sensitive, or compounded. Unlike these approaches catering for high-quality images or features, this paper seeks transferable prior knowledge from detector-friendly images. The prior guides detectors removing degradations that interfere with detection. It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps while the lightly degraded regions of them overlap each other. Therefore, we propose a residual feature transference module (RFTM) to learn a mapping between deep representations of the heavily degraded patches of DFUI- and underwater-images, and make the mapping as a heavily degraded prior (HDP) for underwater detection. Since the statistical properties are independent to image content, HDP can be learned without the supervision of semantic labels and plugged into popular CNN-based feature extraction networks to improve their performance on underwater object detection. Without bells and whistles, evaluations on URPC2020 and UODD show that our methods outperform CNN-based detectors by a large margin. Our method with higher speeds and less parameters still performs better than transformer-based detectors. Our code and DFUI dataset can be found in https://github.com/xiaoDetection/Learning-Heavily-Degraed-Prior .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
嘉人完成签到,获得积分20
2秒前
酷酷酷发布了新的文献求助10
3秒前
优雅羽毛发布了新的文献求助10
3秒前
3秒前
young发布了新的文献求助10
4秒前
66666完成签到,获得积分20
5秒前
嘉人发布了新的文献求助10
6秒前
璇彧发布了新的文献求助10
8秒前
Young完成签到,获得积分10
8秒前
三尺微命完成签到 ,获得积分10
9秒前
沉静的煎蛋完成签到 ,获得积分10
12秒前
12秒前
yyyyyyyyyyyiiii完成签到 ,获得积分10
13秒前
14秒前
Ava应助simpleblue采纳,获得10
14秒前
归尘完成签到,获得积分10
14秒前
上官若男应助2Cd采纳,获得200
14秒前
优雅羽毛完成签到,获得积分10
15秒前
16秒前
18秒前
大轩完成签到 ,获得积分10
18秒前
Caliho发布了新的文献求助10
18秒前
小囡同学完成签到,获得积分10
19秒前
Yiyi发布了新的文献求助10
21秒前
达达完成签到,获得积分10
22秒前
poohl完成签到,获得积分10
23秒前
25秒前
luxiaoyu完成签到,获得积分10
27秒前
Cactus应助矢思然采纳,获得10
28秒前
枫枫829完成签到 ,获得积分10
28秒前
29秒前
科目三应助科研通管家采纳,获得10
29秒前
慕青应助科研通管家采纳,获得10
29秒前
30秒前
爆米花应助科研通管家采纳,获得20
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
桐桐应助科研通管家采纳,获得10
30秒前
天天快乐应助科研通管家采纳,获得10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835