Machine Learning Prediction of Objective Hearing Loss With Demographics, Clinical Factors, and Subjective Hearing Status

医学 接收机工作特性 置信区间 听力损失 听力学 全国健康与营养检查调查 人口统计学的 队列 逐步回归 逻辑回归 助听器 体质指数 人口学 内科学 人口 社会学 环境卫生
作者
Tyler J. Gathman,Janet S. Choi,Ranveer Vasdev,Jamee Schoephoerster,Meredith E. Adams
出处
期刊:Otolaryngology-Head and Neck Surgery [Wiley]
卷期号:169 (3): 504-513 被引量:6
标识
DOI:10.1002/ohn.288
摘要

Abstract Objective Hearing loss (HL) is highly prevalent, yet underrecognized and underdiagnosed. Lack of standardized screening, awareness, cost, and access to hearing testing present barriers to HL identification. To facilitate prescreening and selection of patients who warrant audiometric evaluation, we developed a machine learning (ML) model to predict speech‐frequency pure‐tone average (PTA). Study Design Cross‐sectional study. Setting National Health and Nutrition Examination Survey (NHANES). Methods The cohort included 8918 adults (≥20 years) who completed audiometric testing with NHANES (2012‐2018). The primary outcome measure was the prediction of better hearing ear speech‐frequency PTA. Relevant predictors included demographics, medical conditions, and subjective assessment of hearing. Supervised ML with a tree‐based architecture was used. Regression performance was determined by the mean absolute error (MAE) with binary classification assessed with area under the receiver operating characteristic curve (AUC). Results Using the full set of predictors, the test set MAE between the ML‐predicted and actual PTA was 5.29 dB HL (95% confidence interval [CI]: 4.97‐5.61). The 5 most influential predictors of higher PTA were increased age, worse subjective hearing, male gender, increased body mass index, and history of smoking. The 5‐factor abbreviated model performed comparably to the extended feature set with MAE 5.36 (95% CI: 5.03‐5.69) and AUC for PTA > 25 dB HL of 0.92 (95% CI: 0.90‐0.94). Conclusion The ML model was able to predict PTA with patient demographics, clinical factors, and subjective hearing status. ML‐based prediction may be used to identify individuals who could benefit most from audiometric evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助changyee采纳,获得10
刚刚
清风徐来完成签到,获得积分10
1秒前
CodeCraft应助ShiRz采纳,获得10
1秒前
零零完成签到,获得积分20
1秒前
复杂汉堡发布了新的文献求助10
1秒前
钙离子完成签到,获得积分10
1秒前
加油完成签到,获得积分10
2秒前
2秒前
神勇的曼文发布了新的文献求助200
2秒前
yexiao完成签到,获得积分10
3秒前
3秒前
长帷完成签到,获得积分10
3秒前
lrf完成签到,获得积分10
3秒前
爆米花应助杨杨杨采纳,获得10
4秒前
4秒前
梵高的向日葵完成签到,获得积分10
4秒前
幽默的忆霜完成签到 ,获得积分10
5秒前
肉酱完成签到 ,获得积分10
6秒前
艾云欣完成签到,获得积分10
6秒前
Northtime完成签到,获得积分10
6秒前
7秒前
重要问旋完成签到,获得积分10
8秒前
买菜市民熊先生完成签到,获得积分10
8秒前
一梦三四年完成签到 ,获得积分10
8秒前
雪白的凡灵完成签到,获得积分10
8秒前
冷傲的如柏完成签到,获得积分10
9秒前
Lmmcer发布了新的文献求助10
9秒前
9秒前
Orange应助Young离子采纳,获得10
10秒前
10秒前
心灵美的南霜完成签到 ,获得积分10
11秒前
MHY完成签到,获得积分20
11秒前
11秒前
12秒前
顾矜应助北冥有鱼采纳,获得10
12秒前
神勇的曼文完成签到,获得积分10
12秒前
13秒前
tao完成签到,获得积分10
13秒前
giao完成签到,获得积分10
13秒前
KONG发布了新的文献求助10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746388
求助须知:如何正确求助?哪些是违规求助? 3289255
关于积分的说明 10063382
捐赠科研通 3005672
什么是DOI,文献DOI怎么找? 1650297
邀请新用户注册赠送积分活动 785821
科研通“疑难数据库(出版商)”最低求助积分说明 751269