Machine Learning Prediction of Objective Hearing Loss With Demographics, Clinical Factors, and Subjective Hearing Status

医学 接收机工作特性 置信区间 听力损失 听力学 全国健康与营养检查调查 人口统计学的 队列 逐步回归 逻辑回归 助听器 体质指数 人口学 内科学 人口 环境卫生 社会学
作者
Tyler J. Gathman,Janet S. Choi,Ranveer Vasdev,Jamee Schoephoerster,Meredith E. Adams
出处
期刊:Otolaryngology-Head and Neck Surgery [SAGE]
卷期号:169 (3): 504-513 被引量:6
标识
DOI:10.1002/ohn.288
摘要

Abstract Objective Hearing loss (HL) is highly prevalent, yet underrecognized and underdiagnosed. Lack of standardized screening, awareness, cost, and access to hearing testing present barriers to HL identification. To facilitate prescreening and selection of patients who warrant audiometric evaluation, we developed a machine learning (ML) model to predict speech‐frequency pure‐tone average (PTA). Study Design Cross‐sectional study. Setting National Health and Nutrition Examination Survey (NHANES). Methods The cohort included 8918 adults (≥20 years) who completed audiometric testing with NHANES (2012‐2018). The primary outcome measure was the prediction of better hearing ear speech‐frequency PTA. Relevant predictors included demographics, medical conditions, and subjective assessment of hearing. Supervised ML with a tree‐based architecture was used. Regression performance was determined by the mean absolute error (MAE) with binary classification assessed with area under the receiver operating characteristic curve (AUC). Results Using the full set of predictors, the test set MAE between the ML‐predicted and actual PTA was 5.29 dB HL (95% confidence interval [CI]: 4.97‐5.61). The 5 most influential predictors of higher PTA were increased age, worse subjective hearing, male gender, increased body mass index, and history of smoking. The 5‐factor abbreviated model performed comparably to the extended feature set with MAE 5.36 (95% CI: 5.03‐5.69) and AUC for PTA > 25 dB HL of 0.92 (95% CI: 0.90‐0.94). Conclusion The ML model was able to predict PTA with patient demographics, clinical factors, and subjective hearing status. ML‐based prediction may be used to identify individuals who could benefit most from audiometric evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
沙砾完成签到,获得积分10
刚刚
kjwu发布了新的文献求助10
刚刚
cz发布了新的文献求助10
刚刚
mieyy完成签到,获得积分10
刚刚
Damon完成签到,获得积分10
1秒前
一点完成签到,获得积分10
1秒前
1秒前
1秒前
思源应助追寻的亦凝采纳,获得30
2秒前
2秒前
aodilee应助怡然的甜瓜采纳,获得10
2秒前
Irene完成签到,获得积分10
3秒前
3秒前
我到了啊发布了新的文献求助10
3秒前
意安在完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
gkw发布了新的文献求助10
6秒前
6秒前
6秒前
yu发布了新的文献求助10
7秒前
我是老大应助甜蜜的迎曼采纳,获得10
7秒前
慧慧子发布了新的文献求助10
7秒前
HJJHJH发布了新的文献求助10
8秒前
啊啊啊发布了新的文献求助10
8秒前
8秒前
Hello应助yxy采纳,获得10
9秒前
哆啦A梦完成签到 ,获得积分10
9秒前
齐多达完成签到 ,获得积分10
9秒前
SciGPT应助ray采纳,获得10
10秒前
北地风情应助HJJHJH采纳,获得30
11秒前
11秒前
时钟发布了新的文献求助10
11秒前
小葵完成签到,获得积分10
12秒前
13秒前
奶油啵啵发布了新的文献求助10
13秒前
14秒前
水水发布了新的文献求助30
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728