亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Prediction of Objective Hearing Loss With Demographics, Clinical Factors, and Subjective Hearing Status

医学 接收机工作特性 置信区间 听力损失 听力学 全国健康与营养检查调查 人口统计学的 队列 逐步回归 逻辑回归 助听器 体质指数 人口学 内科学 人口 环境卫生 社会学
作者
Tyler J. Gathman,Janet S. Choi,Ranveer Vasdev,Jamee Schoephoerster,Meredith E. Adams
出处
期刊:Otolaryngology-Head and Neck Surgery [Wiley]
卷期号:169 (3): 504-513 被引量:6
标识
DOI:10.1002/ohn.288
摘要

Abstract Objective Hearing loss (HL) is highly prevalent, yet underrecognized and underdiagnosed. Lack of standardized screening, awareness, cost, and access to hearing testing present barriers to HL identification. To facilitate prescreening and selection of patients who warrant audiometric evaluation, we developed a machine learning (ML) model to predict speech‐frequency pure‐tone average (PTA). Study Design Cross‐sectional study. Setting National Health and Nutrition Examination Survey (NHANES). Methods The cohort included 8918 adults (≥20 years) who completed audiometric testing with NHANES (2012‐2018). The primary outcome measure was the prediction of better hearing ear speech‐frequency PTA. Relevant predictors included demographics, medical conditions, and subjective assessment of hearing. Supervised ML with a tree‐based architecture was used. Regression performance was determined by the mean absolute error (MAE) with binary classification assessed with area under the receiver operating characteristic curve (AUC). Results Using the full set of predictors, the test set MAE between the ML‐predicted and actual PTA was 5.29 dB HL (95% confidence interval [CI]: 4.97‐5.61). The 5 most influential predictors of higher PTA were increased age, worse subjective hearing, male gender, increased body mass index, and history of smoking. The 5‐factor abbreviated model performed comparably to the extended feature set with MAE 5.36 (95% CI: 5.03‐5.69) and AUC for PTA > 25 dB HL of 0.92 (95% CI: 0.90‐0.94). Conclusion The ML model was able to predict PTA with patient demographics, clinical factors, and subjective hearing status. ML‐based prediction may be used to identify individuals who could benefit most from audiometric evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑翅鸢完成签到 ,获得积分10
4秒前
TTRRCEB发布了新的文献求助10
38秒前
传奇3应助科研通管家采纳,获得10
1分钟前
万能图书馆应助nicheng采纳,获得10
2分钟前
Carlos_Soares完成签到,获得积分10
2分钟前
2分钟前
nicheng发布了新的文献求助10
2分钟前
YuhengGuo完成签到,获得积分20
2分钟前
奥丁蒂法完成签到,获得积分10
2分钟前
星辰大海应助YuhengGuo采纳,获得10
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
jqliu完成签到,获得积分10
3分钟前
3分钟前
4分钟前
jqliu发布了新的文献求助10
4分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
6分钟前
忐忑的烤鸡完成签到,获得积分10
7分钟前
斯文的访烟完成签到,获得积分10
7分钟前
lsl完成签到 ,获得积分10
7分钟前
走啊走完成签到,获得积分10
8分钟前
hhh2018687完成签到,获得积分10
8分钟前
sissiarno应助科研通管家采纳,获得200
9分钟前
sissiarno应助科研通管家采纳,获得200
9分钟前
MchemG完成签到,获得积分0
9分钟前
Marshall完成签到 ,获得积分10
9分钟前
9分钟前
10分钟前
xiaozou55完成签到 ,获得积分10
10分钟前
大模型应助乖乖给姐躺好采纳,获得10
10分钟前
10分钟前
Wdwpp完成签到 ,获得积分10
10分钟前
量子星尘发布了新的文献求助30
10分钟前
ataybabdallah完成签到,获得积分10
10分钟前
李健的小迷弟应助qiuxuan100采纳,获得10
10分钟前
10分钟前
然然然后发布了新的文献求助10
10分钟前
乐乐应助科研通管家采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4918186
求助须知:如何正确求助?哪些是违规求助? 4190915
关于积分的说明 13015481
捐赠科研通 3960663
什么是DOI,文献DOI怎么找? 2171330
邀请新用户注册赠送积分活动 1189373
关于科研通互助平台的介绍 1097739