Machine Learning Prediction of Objective Hearing Loss With Demographics, Clinical Factors, and Subjective Hearing Status

医学 接收机工作特性 置信区间 听力损失 听力学 全国健康与营养检查调查 人口统计学的 队列 逐步回归 逻辑回归 助听器 体质指数 人口学 内科学 人口 环境卫生 社会学
作者
Tyler J. Gathman,Janet S. Choi,Ranveer Vasdev,Jamee Schoephoerster,Meredith E. Adams
出处
期刊:Otolaryngology-Head and Neck Surgery [Wiley]
卷期号:169 (3): 504-513 被引量:6
标识
DOI:10.1002/ohn.288
摘要

Abstract Objective Hearing loss (HL) is highly prevalent, yet underrecognized and underdiagnosed. Lack of standardized screening, awareness, cost, and access to hearing testing present barriers to HL identification. To facilitate prescreening and selection of patients who warrant audiometric evaluation, we developed a machine learning (ML) model to predict speech‐frequency pure‐tone average (PTA). Study Design Cross‐sectional study. Setting National Health and Nutrition Examination Survey (NHANES). Methods The cohort included 8918 adults (≥20 years) who completed audiometric testing with NHANES (2012‐2018). The primary outcome measure was the prediction of better hearing ear speech‐frequency PTA. Relevant predictors included demographics, medical conditions, and subjective assessment of hearing. Supervised ML with a tree‐based architecture was used. Regression performance was determined by the mean absolute error (MAE) with binary classification assessed with area under the receiver operating characteristic curve (AUC). Results Using the full set of predictors, the test set MAE between the ML‐predicted and actual PTA was 5.29 dB HL (95% confidence interval [CI]: 4.97‐5.61). The 5 most influential predictors of higher PTA were increased age, worse subjective hearing, male gender, increased body mass index, and history of smoking. The 5‐factor abbreviated model performed comparably to the extended feature set with MAE 5.36 (95% CI: 5.03‐5.69) and AUC for PTA > 25 dB HL of 0.92 (95% CI: 0.90‐0.94). Conclusion The ML model was able to predict PTA with patient demographics, clinical factors, and subjective hearing status. ML‐based prediction may be used to identify individuals who could benefit most from audiometric evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
WSYang完成签到,获得积分10
2秒前
HX发布了新的文献求助10
2秒前
所所应助乖咪甜球球采纳,获得30
3秒前
yed818应助兴奋烤鸡采纳,获得10
3秒前
量子星尘发布了新的文献求助150
4秒前
Wynter发布了新的文献求助10
4秒前
Owen应助迷路的紫菜采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
76542cu发布了新的文献求助10
5秒前
6秒前
小杭76应助Leon采纳,获得10
7秒前
王红瑞完成签到,获得积分20
8秒前
十一完成签到 ,获得积分10
8秒前
8秒前
9秒前
思源应助好大一只狗采纳,获得10
11秒前
MZX发布了新的文献求助10
11秒前
善学以致用应助76542cu采纳,获得10
11秒前
12秒前
景玉发布了新的文献求助10
12秒前
12秒前
哈哈哈呵呵完成签到,获得积分20
12秒前
melo发布了新的文献求助10
12秒前
泽灵发布了新的文献求助30
13秒前
虚幻初之完成签到,获得积分10
13秒前
传奇3应助realha采纳,获得10
13秒前
KONG发布了新的文献求助10
14秒前
wwwxxx123发布了新的文献求助10
14秒前
可爱的函函应助阿嘉采纳,获得10
15秒前
科研通AI6应助王少通采纳,获得10
15秒前
16秒前
英姑应助brayon采纳,获得10
17秒前
orixero应助能干雁凡采纳,获得10
18秒前
annaanna发布了新的文献求助10
18秒前
搜集达人应助摸鱼宝采纳,获得10
18秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5240094
求助须知:如何正确求助?哪些是违规求助? 4407306
关于积分的说明 13718109
捐赠科研通 4276011
什么是DOI,文献DOI怎么找? 2346312
邀请新用户注册赠送积分活动 1343460
关于科研通互助平台的介绍 1301449