Machine Learning Prediction of Objective Hearing Loss With Demographics, Clinical Factors, and Subjective Hearing Status

医学 接收机工作特性 置信区间 听力损失 听力学 全国健康与营养检查调查 人口统计学的 队列 逐步回归 逻辑回归 助听器 体质指数 人口学 内科学 人口 环境卫生 社会学
作者
Tyler J. Gathman,Janet S. Choi,Ranveer Vasdev,Jamee Schoephoerster,Meredith E. Adams
出处
期刊:Otolaryngology-Head and Neck Surgery [Wiley]
卷期号:169 (3): 504-513 被引量:6
标识
DOI:10.1002/ohn.288
摘要

Abstract Objective Hearing loss (HL) is highly prevalent, yet underrecognized and underdiagnosed. Lack of standardized screening, awareness, cost, and access to hearing testing present barriers to HL identification. To facilitate prescreening and selection of patients who warrant audiometric evaluation, we developed a machine learning (ML) model to predict speech‐frequency pure‐tone average (PTA). Study Design Cross‐sectional study. Setting National Health and Nutrition Examination Survey (NHANES). Methods The cohort included 8918 adults (≥20 years) who completed audiometric testing with NHANES (2012‐2018). The primary outcome measure was the prediction of better hearing ear speech‐frequency PTA. Relevant predictors included demographics, medical conditions, and subjective assessment of hearing. Supervised ML with a tree‐based architecture was used. Regression performance was determined by the mean absolute error (MAE) with binary classification assessed with area under the receiver operating characteristic curve (AUC). Results Using the full set of predictors, the test set MAE between the ML‐predicted and actual PTA was 5.29 dB HL (95% confidence interval [CI]: 4.97‐5.61). The 5 most influential predictors of higher PTA were increased age, worse subjective hearing, male gender, increased body mass index, and history of smoking. The 5‐factor abbreviated model performed comparably to the extended feature set with MAE 5.36 (95% CI: 5.03‐5.69) and AUC for PTA > 25 dB HL of 0.92 (95% CI: 0.90‐0.94). Conclusion The ML model was able to predict PTA with patient demographics, clinical factors, and subjective hearing status. ML‐based prediction may be used to identify individuals who could benefit most from audiometric evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YSM完成签到,获得积分0
刚刚
科研通AI6应助。。。。。采纳,获得10
1秒前
机械师简完成签到,获得积分20
1秒前
1秒前
爆米花应助文承龙采纳,获得10
1秒前
唐晓秦完成签到,获得积分10
2秒前
Jourmore完成签到,获得积分0
2秒前
wmt发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
科研通AI5应助kaillera采纳,获得10
4秒前
花啊拾肆发布了新的文献求助10
4秒前
顾矜应助宁馨儿采纳,获得10
4秒前
4秒前
5秒前
5秒前
lalala发布了新的文献求助10
6秒前
与非发布了新的文献求助10
6秒前
沉默完成签到,获得积分10
7秒前
7秒前
Carlo发布了新的文献求助10
7秒前
善学以致用应助王贝贝采纳,获得10
8秒前
Itsccy发布了新的文献求助10
9秒前
执着水杯完成签到,获得积分20
9秒前
ljssll发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助50
9秒前
9秒前
10秒前
1arkspur发布了新的文献求助30
10秒前
大力云朵发布了新的文献求助10
10秒前
搜集达人应助易辙采纳,获得10
10秒前
10秒前
10秒前
10秒前
popo完成签到,获得积分10
11秒前
11秒前
11秒前
。。。。。完成签到,获得积分10
11秒前
可爱的函函应助奕奕采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562