Machine Learning Prediction of Objective Hearing Loss With Demographics, Clinical Factors, and Subjective Hearing Status

医学 接收机工作特性 置信区间 听力损失 听力学 全国健康与营养检查调查 人口统计学的 队列 逐步回归 逻辑回归 助听器 体质指数 人口学 内科学 人口 环境卫生 社会学
作者
Tyler J. Gathman,Janet S. Choi,Ranveer Vasdev,Jamee Schoephoerster,Meredith E. Adams
出处
期刊:Otolaryngology-Head and Neck Surgery [Wiley]
卷期号:169 (3): 504-513 被引量:6
标识
DOI:10.1002/ohn.288
摘要

Abstract Objective Hearing loss (HL) is highly prevalent, yet underrecognized and underdiagnosed. Lack of standardized screening, awareness, cost, and access to hearing testing present barriers to HL identification. To facilitate prescreening and selection of patients who warrant audiometric evaluation, we developed a machine learning (ML) model to predict speech‐frequency pure‐tone average (PTA). Study Design Cross‐sectional study. Setting National Health and Nutrition Examination Survey (NHANES). Methods The cohort included 8918 adults (≥20 years) who completed audiometric testing with NHANES (2012‐2018). The primary outcome measure was the prediction of better hearing ear speech‐frequency PTA. Relevant predictors included demographics, medical conditions, and subjective assessment of hearing. Supervised ML with a tree‐based architecture was used. Regression performance was determined by the mean absolute error (MAE) with binary classification assessed with area under the receiver operating characteristic curve (AUC). Results Using the full set of predictors, the test set MAE between the ML‐predicted and actual PTA was 5.29 dB HL (95% confidence interval [CI]: 4.97‐5.61). The 5 most influential predictors of higher PTA were increased age, worse subjective hearing, male gender, increased body mass index, and history of smoking. The 5‐factor abbreviated model performed comparably to the extended feature set with MAE 5.36 (95% CI: 5.03‐5.69) and AUC for PTA > 25 dB HL of 0.92 (95% CI: 0.90‐0.94). Conclusion The ML model was able to predict PTA with patient demographics, clinical factors, and subjective hearing status. ML‐based prediction may be used to identify individuals who could benefit most from audiometric evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小青椒应助张同学采纳,获得20
1秒前
weber发布了新的文献求助10
1秒前
寒江月完成签到,获得积分10
1秒前
1秒前
哈哈哈完成签到 ,获得积分10
1秒前
yuyu完成签到,获得积分10
2秒前
2秒前
2秒前
火火火完成签到,获得积分10
2秒前
顺心灵枫完成签到 ,获得积分20
2秒前
2秒前
HEnli发布了新的文献求助10
2秒前
搞怪柔发布了新的文献求助10
2秒前
迷路宛筠完成签到 ,获得积分10
3秒前
依霏完成签到,获得积分10
3秒前
尚欣雨发布了新的文献求助10
3秒前
孤独冷霜发布了新的文献求助10
3秒前
3秒前
4秒前
qw1完成签到,获得积分20
4秒前
yhgyjgfgft发布了新的文献求助10
5秒前
5秒前
xjz发布了新的文献求助10
5秒前
小马甲应助FMZ采纳,获得10
6秒前
6秒前
乐乐应助zhouyelly采纳,获得10
6秒前
7秒前
7秒前
7秒前
云悠水澈完成签到,获得积分10
7秒前
时尚初南发布了新的文献求助10
7秒前
科研通AI5应助热心的映冬采纳,获得10
7秒前
斯文败类应助nicholas采纳,获得10
7秒前
mwk123完成签到 ,获得积分10
9秒前
9秒前
Akim应助6666采纳,获得10
9秒前
Anna发布了新的文献求助10
9秒前
ssz发布了新的文献求助10
9秒前
孤独冷霜完成签到,获得积分10
10秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205458
求助须知:如何正确求助?哪些是违规求助? 4384221
关于积分的说明 13652292
捐赠科研通 4242352
什么是DOI,文献DOI怎么找? 2327351
邀请新用户注册赠送积分活动 1325164
关于科研通互助平台的介绍 1277344