Machine Learning Prediction of Objective Hearing Loss With Demographics, Clinical Factors, and Subjective Hearing Status

医学 接收机工作特性 置信区间 听力损失 听力学 全国健康与营养检查调查 人口统计学的 队列 逐步回归 逻辑回归 助听器 体质指数 人口学 内科学 人口 环境卫生 社会学
作者
Tyler J. Gathman,Janet S. Choi,Ranveer Vasdev,Jamee Schoephoerster,Meredith E. Adams
出处
期刊:Otolaryngology-Head and Neck Surgery [SAGE]
卷期号:169 (3): 504-513 被引量:3
标识
DOI:10.1002/ohn.288
摘要

Abstract Objective Hearing loss (HL) is highly prevalent, yet underrecognized and underdiagnosed. Lack of standardized screening, awareness, cost, and access to hearing testing present barriers to HL identification. To facilitate prescreening and selection of patients who warrant audiometric evaluation, we developed a machine learning (ML) model to predict speech‐frequency pure‐tone average (PTA). Study Design Cross‐sectional study. Setting National Health and Nutrition Examination Survey (NHANES). Methods The cohort included 8918 adults (≥20 years) who completed audiometric testing with NHANES (2012‐2018). The primary outcome measure was the prediction of better hearing ear speech‐frequency PTA. Relevant predictors included demographics, medical conditions, and subjective assessment of hearing. Supervised ML with a tree‐based architecture was used. Regression performance was determined by the mean absolute error (MAE) with binary classification assessed with area under the receiver operating characteristic curve (AUC). Results Using the full set of predictors, the test set MAE between the ML‐predicted and actual PTA was 5.29 dB HL (95% confidence interval [CI]: 4.97‐5.61). The 5 most influential predictors of higher PTA were increased age, worse subjective hearing, male gender, increased body mass index, and history of smoking. The 5‐factor abbreviated model performed comparably to the extended feature set with MAE 5.36 (95% CI: 5.03‐5.69) and AUC for PTA > 25 dB HL of 0.92 (95% CI: 0.90‐0.94). Conclusion The ML model was able to predict PTA with patient demographics, clinical factors, and subjective hearing status. ML‐based prediction may be used to identify individuals who could benefit most from audiometric evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
弈迩栅完成签到 ,获得积分10
刚刚
细雨听风完成签到,获得积分10
1秒前
海凌子完成签到,获得积分10
1秒前
哈密瓜爸爸完成签到,获得积分10
2秒前
Noel应助威武的锅锅采纳,获得10
2秒前
潇洒的天与完成签到,获得积分10
2秒前
2秒前
泡芙完成签到 ,获得积分10
3秒前
一帆锋顺完成签到,获得积分10
3秒前
老迟到的小松鼠完成签到,获得积分10
3秒前
周周完成签到,获得积分10
3秒前
yulian完成签到,获得积分10
4秒前
小叙完成签到 ,获得积分10
4秒前
nini完成签到,获得积分10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
Joy完成签到,获得积分10
6秒前
今后应助YJY采纳,获得10
6秒前
999完成签到,获得积分10
8秒前
shufeiyan完成签到,获得积分10
8秒前
研友_nxy9XZ完成签到,获得积分10
9秒前
zzbbk完成签到,获得积分10
9秒前
萤火发布了新的文献求助10
10秒前
刻苦从阳完成签到,获得积分10
10秒前
Allen完成签到,获得积分10
10秒前
受伤的迎松完成签到 ,获得积分10
10秒前
无花果应助西子阳采纳,获得10
10秒前
sbrcpyf完成签到,获得积分10
10秒前
Tek完成签到,获得积分10
11秒前
衬衫完成签到,获得积分10
13秒前
xiaoxiaoliang完成签到,获得积分10
13秒前
liu完成签到,获得积分10
13秒前
13秒前
CHN151完成签到,获得积分10
13秒前
LEMONS完成签到 ,获得积分10
14秒前
czlianjoy完成签到,获得积分10
14秒前
nqterysc完成签到,获得积分10
14秒前
冷酷达完成签到,获得积分10
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167356
求助须知:如何正确求助?哪些是违规求助? 2818845
关于积分的说明 7923006
捐赠科研通 2478644
什么是DOI,文献DOI怎么找? 1320424
科研通“疑难数据库(出版商)”最低求助积分说明 632786
版权声明 602443