化学
拉伤
水滑石
纳米技术
有机化学
医学
材料科学
催化作用
内科学
作者
Xiaoya Wang,Yajuan Li,Xudong Yu
标识
DOI:10.1021/acs.inorgchem.4c02696
摘要
Polymer hydrogels have a wide range of applications in the field of flexible wearable devices from the perspective of easy commercialization and environmental compatibility. However, traditional hydrogels often fail to achieve adequate mechanical strength and performance such as toughness, resilience, and ionic conductivity. Herein, a significant enhancement of tensile strength in 2 orders of magnitude (from 36 kPa to 1.5 MPa) is obtained by the introduction of hydrotalcite into polymer network via multiple, multilevel, and strong interactions of strengthened interface interactions, and the enhancement effect is superior to most of known records. Meanwhile, the enhanced conductivity may be rationally attributed to effective channels of hydrotalcite for ion transport. As a result, high toughness (9.5 MJ/m
科研通智能强力驱动
Strongly Powered by AbleSci AI