星形胶质细胞
细胞生物学
生物
细胞骨架
肌动蛋白细胞骨架
连接蛋白
肌动蛋白
缝隙连接
神经科学
细胞
生物化学
中枢神经系统
细胞内
作者
Grégory Ghézali,Jérôme Ribot,Nathan Curry,Laure‐Elise Pillet,Flora Boutet‐Porretta,Daria Mozheiko,Charles‐Félix Calvo,Pascal Ezan,Isabelle Perfettini,Laure Lecoin,Sébastien Janel,Jonathan Zapata,Carole Escartin,Sandrine Etienne‐Manneville,Clemens F. Kaminski,Nathalie Rouach
出处
期刊:Glia
[Wiley]
日期:2024-07-09
摘要
Abstract During brain maturation, astrocytes establish complex morphologies unveiling intense structural plasticity. Connexin 30 (Cx30), a gap‐junction channel‐forming protein expressed postnatally, dynamically regulates during development astrocyte morphological properties by controlling ramification and extension of fine processes. However, the underlying mechanisms remain unexplored. Here, we found in vitro that Cx30 interacts with the actin cytoskeleton in astrocytes and inhibits its structural reorganization and dynamics during cell migration. This translates into an alteration of local physical surface properties, as assessed by correlative imaging using stimulated emission depletion (STED) super resolution imaging and atomic force microscopy (AFM). Specifically, Cx30 impaired astrocyte cell surface topology and cortical stiffness in motile astrocytes. As Cx30 alters actin organization, dynamics, and membrane physical properties, we assessed whether it controls astrocyte migration. We found that Cx30 reduced persistence and directionality of migrating astrocytes. Altogether, these data reveal Cx30 as a brake for astrocyte structural and mechanical plasticity.
科研通智能强力驱动
Strongly Powered by AbleSci AI