化学
杂原子
阳极
锂(药物)
兴奋剂
离子
电荷(物理)
合金
电催化剂
超短脉冲
无机化学
纳米技术
化学物理
电极
电化学
光电子学
物理化学
戒指(化学)
有机化学
材料科学
医学
激光器
物理
量子力学
光学
内分泌学
作者
En Zhou,Hongchang Jin,Haifeng Lv,Yuansen Xie,Yuanyuan Lu,Ying‐Rui Lu,Ting‐Shan Chan,Chao Wang,Wensheng Yan,Jing Zhang,Hengxing Ji,Xiaojun Wu,Xiangfeng Duan
摘要
Electrocatalysis is generally confined to dynamic liquid-solid and gas-solid interfaces and is rarely applicable in solid-state reactions. Here, we report a paradigm shift strategy to exploit electrocatalysis to accelerate solid-state reactions in the context of lithium-ion batteries (LIBs). We employ heteroatom doping, specifically boron for silicon and sulfur for phosphorus, to catalyze electrochemical Li-alloying reactions in solid-state electrode materials. The preferential cleavage of polar dopant-host chemical bonds upon lithiation triggers chemical bond breaking of the host material. This solid-state catalysis, distinct from liquid and gas phases, requires a critical doping concentration for optimal performance. Beyond a critical concentration of ∼1 atom %, boron and sulfur doping drastically reduces activation energies and accelerates redox kinetics during lithiation/delithiation processes, leading to markedly enhanced rate performance in boron-doped silicon and sulfur-doped black/red phosphorus anode. Notably, a sulfur-doped black phosphorus anode coupled with a lithium cobalt oxide cathode achieves an ultrafast-charging battery, recharging 80% energy of a battery in 302 Wh kg
科研通智能强力驱动
Strongly Powered by AbleSci AI