发光二极管
材料科学
光致发光
纳米晶
钙钛矿(结构)
离子
量子效率
激子
光电子学
二极管
八面体
量子点
化学物理
纳米技术
结晶学
化学
凝聚态物理
物理
有机化学
作者
Yuankun Wang,Sheng Wang,Rui Li,Wenqiang Li,Tengfei Long,Li Wang,Lingmei Kong,Fan Cao,Qianqian Wu,Guohua Jia,Xuyong Yang
出处
期刊:Small
[Wiley]
日期:2024-07-11
被引量:1
标识
DOI:10.1002/smll.202402825
摘要
Abstract The perovskite nanocrystals (PeNCs) are emerging as a promising emitter for light‐emitting diodes (LEDs) due to their excellent optical and electrical properties. However, the ultrafast growth of PeNCs often results in large sizes exceeding the Bohr diameter, leading to low exciton binding energy and susceptibility to nonradiative recombination, while small‐sized PeNCs exhibit a large specific surface area, contributing to an increased defect density. Herein, Zn 2+ ions as a negative catalyst to realize quantum‐confined FAPbBr 3 PeNCs with high photoluminescence quantum yields (PL QY) over 90%. Zn 2+ ions exhibit robust coordination with Br − ions is introduced, effectively retarding the participation of Br − ions in the perovskite crystallization process and thus facilitating PeNCs size control. Notably, Zn 2+ ions neither incorporate into the perovskite lattice nor are absorbed on the surface of PeNCs. And the reduced growth rate also promotes sufficient octahedral coordination of PeNC that reduces defect density. The LEDs based on these optimized PeNCs exhibits an external quantum efficiency (EQE) of 21.7%, significantly surpassing that of the pristine PeNCs (15.2%). Furthermore, the device lifetime is also extended by twofold. This research presents a novel approach to achieving high‐performance optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI