Impact of inert electrode on the volatility and non-volatility switching behavior of SiO2-based conductive bridge random access memory devices

波动性(金融) 材料科学 电极 导电体 随机存取存储器 光电子学 计算机科学 业务 复合材料 化学 财务 物理化学 计算机硬件
作者
C. Tsioustas,Panagiotis Bousoulas,G. Kleitsiotis,S. D. Mantas,Dimitris Tsoukalas
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:125 (2) 被引量:2
标识
DOI:10.1063/5.0209676
摘要

The development of disruptive artificial neural networks (ANNs) endowed with brain-inspired neuromorphic capabilities is emerging as a promising solution to deal with the challenges of the artificial intelligence era. The fabrication of robust and accurate ANNs is strongly associated with the design of new electronic devices. The intriguing properties of memristors render them suitable as building blocks within ANNs. However, the impact of the operating electrodes on the dynamics of the switching process and the relaxation effect remains elusive. It is, thus, apparent that a deep understanding of the underlying electrochemical metallization mechanism that affects the formation of the conductive filament is of great importance. Along these lines, in this work, the impact of various materials as inert electrodes (Pt NPs, ITO, n++ Si, TiN, and W) on tuning the switching mode of low power SiO2-based conductive bridge random access memory devices was systematically investigated. A comprehensive model was applied to interpret the threshold and bipolar switching patterns and shed light on the respective physical mechanisms. The model incorporated the different coefficients of thermal conductivity of the various materials and attempted to associate them with the Soret coefficient and the activation energy of thermophoresis to interpret the experimental outcomes. Our work provides valuable insight for the realization of memristive devices with tunable properties, which can be directly leveraged for implementing a variety of neuromorphic functionalities, such as synaptic plasticity and spike generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
搬砖汉斯发布了新的文献求助50
1秒前
三水完成签到,获得积分10
1秒前
xialuoke完成签到,获得积分10
3秒前
爆米花应助717采纳,获得10
3秒前
gcc应助Ben采纳,获得10
4秒前
科研通AI2S应助abc采纳,获得10
5秒前
小盆呐发布了新的文献求助10
5秒前
5秒前
Aurora完成签到,获得积分10
5秒前
受伤雁荷发布了新的文献求助10
6秒前
碧蓝的海豚完成签到,获得积分10
6秒前
chen发布了新的文献求助10
6秒前
ding应助无限的数据线采纳,获得10
6秒前
闪闪完成签到,获得积分10
6秒前
青原完成签到 ,获得积分10
6秒前
lalala发布了新的文献求助20
7秒前
7秒前
8秒前
慕青应助paojiao不辣采纳,获得10
8秒前
8秒前
科研通AI5应助yaeshin采纳,获得10
9秒前
打打应助reck采纳,获得30
9秒前
9秒前
平常幼菱完成签到,获得积分10
10秒前
研友_Zlv6lL完成签到 ,获得积分10
10秒前
11秒前
11秒前
善学以致用应助受伤雁荷采纳,获得10
12秒前
香蕉觅云应助hhhhhhh采纳,获得10
12秒前
12秒前
13秒前
研友_Zlv6lL关注了科研通微信公众号
13秒前
汉堡包应助YXHTCM采纳,获得10
13秒前
123发布了新的文献求助10
14秒前
laryc发布了新的文献求助10
14秒前
冬狩完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246