计算机科学
编码器
分割
人工智能
卷积神经网络
变压器
深度学习
自编码
模式识别(心理学)
计算机视觉
物理
量子力学
电压
操作系统
作者
Yan Dong,Ting Wang,Chiyuan Ma,Zhenxing Li,Ryad Chellali
标识
DOI:10.1088/1361-6560/acf911
摘要
Objective. In brain tumor segmentation tasks, the convolutional neural network (CNN) or transformer is usually acted as the encoder since the encoder is necessary to be used. On one hand, the convolution operation of CNN has advantages of extracting local information although its performance of obtaining global expressions is bad. On the other hand, the attention mechanism of the transformer is good at establishing remote dependencies while it is lacking in the ability to extract high-precision local information. Either high precision local information or global contextual information is crucial in brain tumor segmentation tasks. The aim of this paper is to propose a brain tumor segmentation model that can simultaneously extract and fuse high-precision local and global contextual information.Approach. We propose a network model DE-Uformer with dual encoders to obtain local features and global representations using both CNN encoder and Transformer encoder. On the basis of this, we further propose the nested encoder-aware feature fusion (NEaFF) module for effective deep fusion of the information under each dimension. It may establishe remote dependencies of features under a single encoder via the spatial attention Transformer. Meanwhile ,it also investigates how features extracted from two encoders are related with the cross-encoder attention transformer.Main results. The proposed algorithm segmentation have been performed on BraTS2020 dataset and private meningioma dataset. Results show that it is significantly better than current state-of-the-art brain tumor segmentation methods.Significance. The method proposed in this paper greatly improves the accuracy of brain tumor segmentation. This advancement helps healthcare professionals perform a more comprehensive analysis and assessment of brain tumors, thereby improving diagnostic accuracy and reliability. This fully automated brain model segmentation model with high accuracy is of great significance for critical decisions made by physicians in selecting treatment strategies and preoperative planning.
科研通智能强力驱动
Strongly Powered by AbleSci AI