DE-UFormer: U-shaped dual encoder architectures for brain tumor segmentation

计算机科学 编码器 分割 人工智能 卷积神经网络 变压器 深度学习 自编码 模式识别(心理学) 计算机视觉 物理 量子力学 电压 操作系统
作者
Yan Dong,Ting Wang,Chiyuan Ma,Zhenxing Li,Ryad Chellali
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (19): 195019-195019 被引量:1
标识
DOI:10.1088/1361-6560/acf911
摘要

Objective. In brain tumor segmentation tasks, the convolutional neural network (CNN) or transformer is usually acted as the encoder since the encoder is necessary to be used. On one hand, the convolution operation of CNN has advantages of extracting local information although its performance of obtaining global expressions is bad. On the other hand, the attention mechanism of the transformer is good at establishing remote dependencies while it is lacking in the ability to extract high-precision local information. Either high precision local information or global contextual information is crucial in brain tumor segmentation tasks. The aim of this paper is to propose a brain tumor segmentation model that can simultaneously extract and fuse high-precision local and global contextual information.Approach. We propose a network model DE-Uformer with dual encoders to obtain local features and global representations using both CNN encoder and Transformer encoder. On the basis of this, we further propose the nested encoder-aware feature fusion (NEaFF) module for effective deep fusion of the information under each dimension. It may establishe remote dependencies of features under a single encoder via the spatial attention Transformer. Meanwhile ,it also investigates how features extracted from two encoders are related with the cross-encoder attention transformer.Main results. The proposed algorithm segmentation have been performed on BraTS2020 dataset and private meningioma dataset. Results show that it is significantly better than current state-of-the-art brain tumor segmentation methods.Significance. The method proposed in this paper greatly improves the accuracy of brain tumor segmentation. This advancement helps healthcare professionals perform a more comprehensive analysis and assessment of brain tumors, thereby improving diagnostic accuracy and reliability. This fully automated brain model segmentation model with high accuracy is of great significance for critical decisions made by physicians in selecting treatment strategies and preoperative planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿坤完成签到,获得积分10
2秒前
dd发布了新的文献求助10
3秒前
桐桐应助小智采纳,获得10
3秒前
九川完成签到,获得积分10
3秒前
混子完成签到,获得积分10
3秒前
3秒前
4秒前
Wang完成签到,获得积分10
4秒前
星辰大海应助Ll采纳,获得10
4秒前
Jasper应助妮儿采纳,获得10
5秒前
tododoto完成签到,获得积分10
5秒前
5秒前
淙淙柔水完成签到,获得积分0
5秒前
杳鸢应助mc1220采纳,获得10
5秒前
rosa完成签到,获得积分10
5秒前
郑小七发布了新的文献求助10
6秒前
Tianxu Li完成签到,获得积分10
7秒前
7秒前
九川发布了新的文献求助10
8秒前
Lucas应助无限的隶采纳,获得10
8秒前
胡雅琴完成签到,获得积分10
8秒前
sakurai完成签到,获得积分10
9秒前
清歌扶酒关注了科研通微信公众号
9秒前
二尖瓣后叶举报ww求助涉嫌违规
9秒前
烟花应助轻松笙采纳,获得10
9秒前
沉默凡桃完成签到,获得积分10
10秒前
10秒前
luuuuuing发布了新的文献求助30
10秒前
啦啦啦完成签到,获得积分10
10秒前
小可发布了新的文献求助10
10秒前
11秒前
LKGG完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
周士乐发布了新的文献求助10
12秒前
Sunshine发布了新的文献求助10
12秒前
呼吸之野完成签到,获得积分10
13秒前
害怕的小懒虫完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759