DE-UFormer: U-shaped dual encoder architectures for brain tumor segmentation

计算机科学 编码器 分割 人工智能 卷积神经网络 变压器 深度学习 自编码 模式识别(心理学) 计算机视觉 物理 量子力学 电压 操作系统
作者
Yan Dong,Ting Wang,Chiyuan Ma,Zhenxing Li,Ryad Chellali
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (19): 195019-195019 被引量:1
标识
DOI:10.1088/1361-6560/acf911
摘要

Objective. In brain tumor segmentation tasks, the convolutional neural network (CNN) or transformer is usually acted as the encoder since the encoder is necessary to be used. On one hand, the convolution operation of CNN has advantages of extracting local information although its performance of obtaining global expressions is bad. On the other hand, the attention mechanism of the transformer is good at establishing remote dependencies while it is lacking in the ability to extract high-precision local information. Either high precision local information or global contextual information is crucial in brain tumor segmentation tasks. The aim of this paper is to propose a brain tumor segmentation model that can simultaneously extract and fuse high-precision local and global contextual information.Approach. We propose a network model DE-Uformer with dual encoders to obtain local features and global representations using both CNN encoder and Transformer encoder. On the basis of this, we further propose the nested encoder-aware feature fusion (NEaFF) module for effective deep fusion of the information under each dimension. It may establishe remote dependencies of features under a single encoder via the spatial attention Transformer. Meanwhile ,it also investigates how features extracted from two encoders are related with the cross-encoder attention transformer.Main results. The proposed algorithm segmentation have been performed on BraTS2020 dataset and private meningioma dataset. Results show that it is significantly better than current state-of-the-art brain tumor segmentation methods.Significance. The method proposed in this paper greatly improves the accuracy of brain tumor segmentation. This advancement helps healthcare professionals perform a more comprehensive analysis and assessment of brain tumors, thereby improving diagnostic accuracy and reliability. This fully automated brain model segmentation model with high accuracy is of great significance for critical decisions made by physicians in selecting treatment strategies and preoperative planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
刚刚
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
少喝水呀完成签到,获得积分10
1秒前
1秒前
日川冈坂发布了新的文献求助10
1秒前
huihui完成签到,获得积分10
2秒前
11111发布了新的文献求助10
2秒前
不过尔尔发布了新的文献求助20
2秒前
kunk40523完成签到,获得积分10
2秒前
2秒前
3秒前
AdventureChen完成签到 ,获得积分10
3秒前
小二郎应助卿博文采纳,获得10
3秒前
聪慧醉卉完成签到,获得积分10
4秒前
包容的凌波完成签到,获得积分10
4秒前
5秒前
JamesPei应助PositiveJugend采纳,获得10
5秒前
6rkuttsmdt完成签到,获得积分10
5秒前
sujingbo完成签到 ,获得积分10
6秒前
cdd发布了新的文献求助10
6秒前
6秒前
。.。发布了新的文献求助10
7秒前
HEIKU应助研友_ngKyqn采纳,获得10
8秒前
疯狂的皮卡丘完成签到,获得积分20
8秒前
8秒前
TTQQ发布了新的文献求助10
9秒前
小郭发布了新的文献求助10
10秒前
英姑应助称心千凝采纳,获得10
11秒前
gguc发布了新的文献求助10
11秒前
11秒前
orixero应助cdd采纳,获得10
12秒前
12秒前
李白白白发布了新的文献求助10
13秒前
13秒前
科目三应助李晓采纳,获得10
13秒前
14秒前
14秒前
14秒前
唯有完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3101389
求助须知:如何正确求助?哪些是违规求助? 2752795
关于积分的说明 7621022
捐赠科研通 2405111
什么是DOI,文献DOI怎么找? 1276127
科研通“疑难数据库(出版商)”最低求助积分说明 616705
版权声明 599058