猴痘
荧光
信号(编程语言)
胶体金
化学
纳米技术
材料科学
纳米颗粒
光学
计算机科学
物理
生物化学
牛痘
基因
程序设计语言
重组DNA
作者
Xingsheng Yang,Xiaodan Cheng,Hongjuan Wei,Zhijie Tu,Zhen Rong,Chongwen Wang,Shengqi Wang
标识
DOI:10.1186/s12951-023-02215-4
摘要
The outbreak of the monkeypox virus (MPXV) worldwide in 2022 highlights the need for a rapid and low-cost MPXV detection tool for effectively monitoring and controlling monkeypox disease. In this study, we developed a flexible lateral flow immunoassay (LFIA) with strong colorimetric and enhanced fluorescence dual-signal output for the rapid, on-site, and highly sensitive detection of the MPXV antigen in different scenarios. A multilayered SiO2-Au core dual-quantum dot (QD) shell nanocomposite (named SiO2-Au/DQD), which consists of a large SiO2 core (~ 200 nm), one layer of density-controlled gold nanoparticles (AuNPs, 20 nm), and thousands of small QDs, was fabricated instead of a traditional colorimetric nanotag (i.e., AuNPs) and a fluorescent nanotag (QD nanobead) to simultaneously provide good stability, strong colorimetric ability and superior fluorescence intensity. With the dual-signal output LFIA, we achieved the specific screening of the MPXV antigen (A29L) in 15 min, with detection limits of 0.5 and 0.0021 ng/mL for the colorimetric and fluorometric modes, respectively. Moreover, the colorimetric mode of SiO2-Au/DQD-LFIA exhibits the same sensitivity as the traditional AuNP- LFIA, whereas the overall sensitivity of this method on the basis of the fluorescent signal can achieve 238- and 3.3-fold improvements in sensitivity for MPXV compared with the AuNP-based LFIA and ELISA methods, respectively, indicating the powerful performance and good versatility of the dual-signal method in the point-of-care testing of the MPXV.
科研通智能强力驱动
Strongly Powered by AbleSci AI