Enlightening the path to NSCLC biomarkers: Utilizing the power of XAI-guided deep learning

计算机科学 人工智能 机器学习 路径(计算) 功率(物理) 深度学习 医学 计算机网络 物理 量子力学
作者
Kountay Dwivedi,Ankit Rajpal,Sheetal Rajpal,Virendra Kumar,Manoj Agarwal,Naveen Kumar
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:243: 107864-107864 被引量:12
标识
DOI:10.1016/j.cmpb.2023.107864
摘要

The early diagnosis of Non-small cell lung cancer (NSCLC) is of prime importance to improve the patient's survivability and quality of life. Being a heterogeneous disease at the molecular and cellular level, the biomarkers responsible for the heterogeneity aid in distinguishing NSCLC into its prominent subtypes–adenocarcinoma and squamous cell carcinoma. Moreover, if identified, these biomarkers could pave the path to targeted therapy. Through this work, a novel explainable AI (XAI)-guided deep learning framework is proposed that assists in discovering a set of significant NSCLC-relevant biomarkers using methylation data. The proposed framework is divided into two blocks– the first block combines an autoencoder and a neural network to classify NSCLC instances. The second block utilizes various eXplainable AI (XAI) methods, namely IntegratedGradients, GradientSHAP, and DeepLIFT, to discover a set of seven significant biomarkers. The classification performance of the biomarkers discovered using the proposed framework is evaluated by employing multiple machine learning algorithms, among which the Multilayer Perceptron (MLP) algorithm-based model outperforms others, yielding a 10-fold cross-validation accuracy of 91.53%. An improved accuracy of 96.37% is achieved by integrating RNA-Seq, CNV, and methylation data. On performing statistical analysis using the Friedman and Nemenyi tests, the MLP model is found to be significantly better than other machine learning-based models. Further, the clinical efficacy of the resultant biomarkers is established based on their potential druggability, the likelihood of predicting NSCLC patients' survival, gene-disease association, and biological pathways targeted by them. While the biomarkers C18orf18, CCNT2, THOP1, and TNPO2, are found potentially druggable, the biomarkers CCDC15, SNORA9, THOP1, and TNPO2 are found prognostically relevant. On further analysis, some of the discovered biomarkers are found to be associated with around 104 diseases. Moreover, five KEGG, ten Reactome, and three Wiki pathways are found to be triggered by the biomarkers discovered. In summary, the proposed framework uncovers a set of clinically effective biomarkers that accurately classify NSCLC. As a future course of work, efforts would be made to combine a variety of omics data with histopathological data to unveil more precise biomarkers for devising personalized therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mt发布了新的文献求助10
1秒前
文子完成签到 ,获得积分10
2秒前
JamesPei应助爱听歌笑寒采纳,获得10
2秒前
2秒前
英俊的铭应助enndyou采纳,获得10
3秒前
4秒前
嗯哼发布了新的文献求助10
4秒前
wadaxiwa应助Veronica Mew采纳,获得20
4秒前
lzm发布了新的文献求助10
5秒前
5秒前
秋秋发布了新的文献求助10
5秒前
5秒前
6秒前
orixero应助木子采纳,获得10
6秒前
6秒前
7秒前
huan完成签到,获得积分10
8秒前
9秒前
9秒前
maohui发布了新的文献求助10
10秒前
10秒前
zho驳回了今后应助
10秒前
深情安青应助科研达人采纳,获得10
11秒前
不安慕蕊发布了新的文献求助10
11秒前
NZH发布了新的文献求助10
11秒前
huan发布了新的文献求助10
12秒前
orixero应助灵活又幸福的胖采纳,获得10
12秒前
大树发布了新的文献求助10
12秒前
13秒前
llyric发布了新的文献求助10
14秒前
14秒前
科研通AI5应助sqx0720采纳,获得10
15秒前
15秒前
我真服了完成签到 ,获得积分10
16秒前
大个应助科研小白采纳,获得10
16秒前
何火火发布了新的文献求助10
16秒前
Dr.Zheng发布了新的文献求助10
16秒前
快乐的土土完成签到 ,获得积分10
17秒前
香蕉觅云应助sodawater采纳,获得10
18秒前
领导范儿应助huan采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553842
求助须知:如何正确求助?哪些是违规求助? 3129593
关于积分的说明 9383508
捐赠科研通 2828757
什么是DOI,文献DOI怎么找? 1555168
邀请新用户注册赠送积分活动 725867
科研通“疑难数据库(出版商)”最低求助积分说明 715320