材料科学
电导率
分子
纳米技术
铜
兴奋剂
价(化学)
电阻率和电导率
离子
氧化还原
导电体
水溶液中的金属离子
金属有机骨架
金属
化学工程
光电子学
复合材料
物理化学
吸附
有机化学
电气工程
冶金
化学
工程类
作者
Chongcai Sun,Weike Wang,Xueyang Mu,Yifan Zhang,Yong Wang,Chuang Ma,Zhen Jia,Jian‐Kang Zhu,Chengbing Wang
标识
DOI:10.1021/acsami.2c17417
摘要
Integration of metal-organic frameworks (MOFs) and flexible fabrics has been recently considered as a promising strategy applied in wearable electronic devices. We synthesized a flexible fabric-based Cu-HHTP film consisted of Cu2+ ions and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) via a self-sacrificial template method. The obtained Cu-HHTP film displays an outstanding nanostructured surface and uniformity. Iodine molecules are first introduced into the pores of Cu-HHTP to investigate the influence of guest molecules on electrical conductivity in a 2D guest-host system. After doping, the conductivity of the Cu-HHTP film shows an increased dependent on the doping time, and the maximum value is more than 30 times that of the original MOFs. The enhanced electrical conductivity results from an intriguing redox interaction occurred between the confined iodine molecules and the framework. The organic ligands are oxidized by iodine molecules, and generating new ions allows for subsequent participation in the regulation of the mixed valence bands of copper ions in MOFs, changing the ratio of Cu2+/Cu+, promoting the charge transport of the framework, and then synergistically enhancing the electronic conductivity. This study successfully prepared a flexible fabric-based conductive I2@Cu-HHTP film and presented insights into revealing the behavior of iodine molecules after entering the Cu-HHTP pores, expanding the possibilities of Cu-HHTP used in flexible wearable electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI