Optimal decision-making of post-disaster emergency material scheduling based on helicopter–truck–drone collaboration

无人机 卡车 解算器 调度(生产过程) 启发式 应急管理 计算机科学 整数规划 运筹学 作业车间调度 自然灾害 工程类 运营管理 算法 人工智能 地铁列车时刻表 生物 遗传学 物理 气象学 法学 政治学 程序设计语言 航空航天工程 操作系统
作者
Yong Shi,Junhao Yang,Qian Han,Hao Song,Haixiang Guo
出处
期刊:Omega [Elsevier]
卷期号:127: 103104-103104 被引量:7
标识
DOI:10.1016/j.omega.2024.103104
摘要

In the last decades, natural disasters, such as earthquakes and landslides, have occurred frequently, seriously threatening the safety of people's lives and property. How emergency material is scheduled and delivered efficiently to the affected sites after a disaster has become a critical issue in emergency management. Current studies on emergency material scheduling mainly focus on truck or helicopter transport. Inspired by the success of employing drones in commercial logistics, this work investigates the emergency material scheduling issue based on the cooperative transport of drones, helicopters, and trucks. Specifically, this paper considers the limited transport capacity, road conditions in the early stage of the disaster rescue, and affected sites restricted by road conditions that can only be served by helicopters or drones. The studied problem is formulated as a mixed integer programming model, and a two-stage heuristic algorithm is developed to solve the model. For the proposed model, instances of different sizes are generated, and extensive experiments are performed to test the efficiency of the proposed algorithm. The comparison between the solutions obtained by the two-stage algorithm and Gurobi Solver for the small instances validates the effectiveness of the proposed heuristic algorithm. Experimental results for the larger instances show that the proposed two-stage algorithm can effectively solve the problem of emergency material scheduling. Sensitivity analysis of ten typical instances is performed to provide managerial insights. Finally, a case study of the Sichuan earthquake and the visualization of transport routes are presented. The model and solving approach proposed in this work can provide essential decision references for emergency management decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Akim应助若狂采纳,获得10
刚刚
Owen应助困困咪采纳,获得10
刚刚
刚刚
大雁完成签到 ,获得积分10
1秒前
就这样完成签到 ,获得积分10
1秒前
nn发布了新的文献求助10
1秒前
manan发布了新的文献求助10
1秒前
1秒前
1秒前
落落发布了新的文献求助10
1秒前
ssss完成签到,获得积分10
2秒前
余红发布了新的文献求助10
2秒前
jackcy完成签到 ,获得积分10
2秒前
成都完成签到,获得积分20
2秒前
3秒前
wjh发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
整齐的白筠完成签到,获得积分10
4秒前
WWWUBING完成签到,获得积分10
5秒前
小文发布了新的文献求助10
5秒前
MJQ发布了新的文献求助10
5秒前
5秒前
春夏秋冬发布了新的文献求助10
6秒前
6秒前
6秒前
李健的小迷弟应助nn采纳,获得10
6秒前
彭于晏应助sunzhiyu233采纳,获得10
7秒前
7秒前
zzznznnn完成签到,获得积分10
7秒前
7秒前
马保国123发布了新的文献求助10
7秒前
7秒前
慕青应助wsljc134采纳,获得10
7秒前
8秒前
世界尽头完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759