Application of the dynamic transformer model with well logging data for formation porosity prediction

物理 多孔性 变压器 登录中 复合材料 林业 电压 量子力学 材料科学 地理
作者
Youzhuang Sun,Shanchen Pang,Yong-An Zhang,Junhua Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (3) 被引量:5
标识
DOI:10.1063/5.0193903
摘要

Porosity, as a key parameter to describe the properties of rock reservoirs, is essential for evaluating the permeability and fluid migration performance of underground rocks. In order to overcome the limitations of traditional logging porosity interpretation methods in the face of geological complexity and nonlinear relationships, the Dynamic Transformer model in machine learning was introduced in this study, aiming to improve the accuracy and generalization ability of logging porosity prediction. Dynamic Transformer is a deep learning model based on the self-attention mechanism. Compared with traditional sequence models, Dynamic Transformer has a better ability to process time series data and is able to focus on different parts of the input sequence in different locations, so as to better capture global information and long-term dependencies. This is a significant advantage for logging tasks with complex geological structures and time series data. In addition, the model introduces Dynamic Convolution Kernels to increase the model coupling, so that the model can better understand the dependencies between different positions in the input sequence. The introduction of this module aims to enhance the model's ability to model long-distance dependence in sequences, thereby improving its performance. We trained the model on the well log dataset to ensure that it has good generalization ability. In addition, we comprehensively compare the performance of the Dynamic Transformer model with other traditional machine learning models to verify its superiority in logging porosity prediction. Through the analysis of experimental results, the Dynamic Transformer model shows good superiority in the task of logging porosity prediction. The introduction of this model will bring a new perspective to the development of logging technology and provide a more efficient and accurate tool for the field of geoscience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cqrao完成签到,获得积分10
1秒前
you完成签到,获得积分10
2秒前
深情安青应助快乐的水瑶采纳,获得10
2秒前
4秒前
6秒前
6秒前
猪幺妖完成签到 ,获得积分10
7秒前
sun完成签到,获得积分20
8秒前
9秒前
敏哇哇哇完成签到,获得积分10
10秒前
sun发布了新的文献求助10
11秒前
11秒前
11秒前
火星上滑板完成签到,获得积分10
14秒前
15秒前
16秒前
17秒前
科研通AI5应助Newky采纳,获得10
18秒前
sam发布了新的文献求助10
20秒前
稗子酿的酒完成签到,获得积分10
20秒前
veblem完成签到,获得积分10
20秒前
研友_VZG7GZ应助cardiomyocytes采纳,获得10
24秒前
28秒前
lxl完成签到,获得积分10
29秒前
31秒前
33秒前
33秒前
港岛妹妹发布了新的文献求助10
33秒前
34秒前
Dotson完成签到 ,获得积分10
35秒前
科研通AI5应助杜aaaaaa采纳,获得10
36秒前
nnnick完成签到,获得积分0
37秒前
38秒前
rita4616发布了新的文献求助10
38秒前
guangshuang发布了新的文献求助10
38秒前
yayyaya发布了新的文献求助10
40秒前
JY发布了新的文献求助50
41秒前
Beebee24完成签到,获得积分10
42秒前
43秒前
生动向日葵完成签到,获得积分20
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670919
求助须知:如何正确求助?哪些是违规求助? 3227795
关于积分的说明 9777243
捐赠科研通 2937977
什么是DOI,文献DOI怎么找? 1609718
邀请新用户注册赠送积分活动 760446
科研通“疑难数据库(出版商)”最低求助积分说明 735959