Machine Learning Detects Symptomatic Plaques in Patients With Carotid Atherosclerosis on CT Angiography

医学 接收机工作特性 狭窄 放射科 无症状的 血管造影 计算机断层血管造影 回顾性队列研究 曲线下面积 逻辑回归 内科学
作者
Francesco Pisu,Brady J. Williamson,Valentina Nardi,Kosmas I. Paraskevas,Josep Puig,Achala Vagal,Gianluca De Rubeis,Michele Porcu,Riccardo Cau,John C. Benson,Antonella Balestrieri,Giuseppe Lanzino,Jasjit S. Suri,Abdelkader Mahammedi,Luca Saba
出处
期刊:Circulation-cardiovascular Imaging [Ovid Technologies (Wolters Kluwer)]
卷期号:17 (6) 被引量:1
标识
DOI:10.1161/circimaging.123.016274
摘要

BACKGROUND: This study aimed to develop and validate a computed tomography angiography based machine learning model that uses plaque composition data and degree of carotid stenosis to detect symptomatic carotid plaques in patients with carotid atherosclerosis. METHODS: The machine learning based model was trained using degree of stenosis and the volumes of 13 computed tomography angiography derived intracarotid plaque subcomponents (eg, lipid, intraplaque hemorrhage, calcium) to identify plaques associated with cerebrovascular events. The model was internally validated through repeated 10-fold cross-validation and tested on a dedicated testing cohort according to discrimination and calibration. RESULTS: This retrospective, single-center study evaluated computed tomography angiography scans of 268 patients with both symptomatic and asymptomatic carotid atherosclerosis (163 for the derivation set and 106 for the testing set) performed between March 2013 and October 2019. The area-under-receiver-operating characteristics curve by machine learning on the testing cohort (0.89) was significantly higher than the areas under the curve of traditional logit analysis based on the degree of stenosis (0.51, P <0.001), presence of intraplaque hemorrhage (0.69, P <0.001), and plaque composition (0.78, P <0.001), respectively. Comparable performance was obtained on internal validation. The identified plaque components and associated cutoff values that were significantly associated with a higher likelihood of symptomatic status after adjustment were the ratio of intraplaque hemorrhage to lipid volume (≥50%, 38.5 [10.1–205.1]; odds ratio, 95% CI) and percentage of intraplaque hemorrhage volume (≥10%, 18.5 [5.7–69.4]; odds ratio, 95% CI). CONCLUSIONS: This study presented an interpretable machine learning model that accurately identifies symptomatic carotid plaques using computed tomography angiography derived plaque composition features, aiding clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
藤椒辣鱼应助wzwer123采纳,获得10
1秒前
啦啦啦完成签到,获得积分10
1秒前
丘比特应助DraGon采纳,获得10
1秒前
1秒前
舒服的远望完成签到,获得积分10
2秒前
dandan发布了新的文献求助30
2秒前
完美冷安完成签到,获得积分10
2秒前
科研通AI2S应助了凡采纳,获得10
2秒前
2秒前
2秒前
2秒前
科研通AI2S应助赵明君采纳,获得10
4秒前
Fairy完成签到,获得积分0
4秒前
SciGPT应助爱吃泡芙采纳,获得10
5秒前
5秒前
5秒前
想瘦的海豹完成签到,获得积分10
5秒前
6秒前
沙糖桔完成签到,获得积分10
6秒前
TaoJ发布了新的文献求助10
7秒前
欢喜素阴发布了新的文献求助10
7秒前
拼搏菲鹰完成签到,获得积分10
7秒前
二硫碘化钾完成签到,获得积分10
7秒前
积极的爆米花完成签到,获得积分10
8秒前
8秒前
kx完成签到,获得积分10
8秒前
酷炫的从雪完成签到,获得积分10
8秒前
小二郎应助汤浩宏采纳,获得10
9秒前
花椒泡茶完成签到 ,获得积分10
9秒前
合适的晓亦完成签到,获得积分10
9秒前
zxy发布了新的文献求助10
10秒前
ZZ0901完成签到,获得积分10
10秒前
白茶完成签到,获得积分10
10秒前
prosperp举报牛轰轰求助涉嫌违规
10秒前
青山道友发布了新的文献求助10
10秒前
阿欣完成签到,获得积分10
10秒前
沐紫心完成签到 ,获得积分10
11秒前
七田皿发布了新的文献求助10
11秒前
共享精神应助静心安逸采纳,获得10
11秒前
南宫聿发布了新的文献求助30
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455913
求助须知:如何正确求助?哪些是违规求助? 3051146
关于积分的说明 9024812
捐赠科研通 2739917
什么是DOI,文献DOI怎么找? 1502965
科研通“疑难数据库(出版商)”最低求助积分说明 694666
邀请新用户注册赠送积分活动 693479