光电子学
材料科学
电阻随机存取存储器
等离子体子
图像传感器
蛋白质丝
计算机科学
纳米技术
光学
电极
物理
量子力学
复合材料
作者
Quan Yang,Yu Kang,Chengchun Zhang,Haohan Chen,Tianjiao Zhang,Zheng Bian,Xiangwei Su,Wei Xu,Jiabao Sun,Pan Wang,Yang Xu,Bin Yu,Yuda Zhao
标识
DOI:10.1002/advs.202403043
摘要
Abstract The optoelectronic resistive random‐access memory (RRAM) with the integrated function of perception, storage and intrinsic randomness displays promising applications in the hardware level in‐sensor image cryptography. In this work, 2D hexagonal boron nitride based optoelectronic RRAM is fabricated with semitransparent noble metal (Ag or Au) as top electrodes, which can simultaneous capture color image and generate physically unclonable function (PUF) key for in‐sensor color image cryptography. Surface plasmons of noble metals enable the strong light absorption to realize an efficient modulation of filament growth at nanoscale. Resistive switching curves show that the optical stimuli can impede the filament aggregation and promote the filament annihilation, which originates from photothermal effects and photogenerated hot electrons in localized surface plasmon resonance of noble metals. By selecting noble metals, the optoelectronic RRAM array can respond to distinct wavelengths and mimic the biological dichromatic cone cells to perform the color perception. Due to the intrinsic and high‐quality randomness, the optoelectronic RRAM can produce a PUF key in every exposure cycle, which can be applied in the reconfigurable cryptography. The findings demonstrate an effective strategy to build optoelectronic RRAM for in‐sensor color image cryptography applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI