亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel LVPA-UNet network for target volume automatic delineation: an MRI case study of nasopharyngeal carcinoma

鼻咽癌 体积热力学 医学 肿瘤科 核医学 放射科 放射治疗 物理 量子力学
作者
Yu Zhang,Haoran Xu,Junhao Wen,Yujun Hu,Yinliang Diao,Junliang Chen,Yunfei Xia
出处
期刊:Heliyon [Elsevier BV]
卷期号:: e30763-e30763
标识
DOI:10.1016/j.heliyon.2024.e30763
摘要

Accurate delineation of Gross Tumor Volume (GTV) is crucial for radiotherapy. Deep learning-driven GTV segmentation technologies excel in rapidly and accurately delineating GTV, providing a basis for radiologists in formulating radiation plans. The existing 2D and 3D segmentation models of GTV based on deep learning are limited by the loss of spatial features and anisotropy respectively, and are both affected by the variability of tumor characteristics, blurred boundaries, and background interference. All these factors seriously affect the segmentation performance. To address the above issues, a Layer-Volume Parallel Attention (LVPA)-UNet model based on 2D-3D architecture has been proposed in this study, in which three strategies are introduced. Firstly, 2D and 3D workflows are introduced in the LVPA-UNet. They work in parallel and can guide each other. Both the fine features of each slice of 2D MRI and the 3D anatomical structure and spatial features of the tumor can be extracted by them. Secondly, parallel multi-branch depth-wise strip convolutions adapt the model to tumors of varying shapes and sizes within slices and volumetric spaces, and achieve refined processing of blurred boundaries. Lastly, a Layer-Channel Attention mechanism is proposed to adaptively adjust the weights of slices and channels according to their different tumor information, and then to highlight slices and channels with tumor. The experiments by LVPA-UNet on 1010 nasopharyngeal carcinoma (NPC) MRI datasets from three centers show a DSC of 0.7907, precision of 0.7929, recall of 0.8025, and HD95 of 1.8702 mm, outperforming eight typical models. Compared to the baseline model, it improves DSC by 2.14 %, precision by 2.96 %, and recall by 1.01 %, while reducing HD95 by 0.5434 mm. Consequently, while ensuring the efficiency of segmentation through deep learning, LVPA-UNet is able to provide superior GTV delineation results for radiotherapy and offer technical support for precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博慧发布了新的文献求助10
2秒前
tianya完成签到,获得积分10
2秒前
能干的台灯完成签到,获得积分10
5秒前
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
ly完成签到,获得积分10
21秒前
36秒前
在水一方应助和和和采纳,获得10
39秒前
wuran发布了新的文献求助10
40秒前
AiQi完成签到 ,获得积分10
47秒前
54秒前
博慧完成签到,获得积分10
55秒前
wanci应助ly采纳,获得10
57秒前
最最最发布了新的文献求助10
57秒前
1分钟前
H_C发布了新的文献求助20
1分钟前
利好完成签到 ,获得积分10
1分钟前
1分钟前
传奇3应助简单山水采纳,获得10
1分钟前
和和和发布了新的文献求助10
1分钟前
ly发布了新的文献求助10
1分钟前
Wei完成签到 ,获得积分10
1分钟前
稻子完成签到 ,获得积分10
1分钟前
wanci应助ly采纳,获得10
1分钟前
和和和完成签到,获得积分10
1分钟前
小蘑菇应助iiii采纳,获得50
1分钟前
1分钟前
简单山水发布了新的文献求助10
2分钟前
2分钟前
灵感大王喵完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
iiii发布了新的文献求助50
2分钟前
爆米花应助拾光采纳,获得10
2分钟前
Percy完成签到 ,获得积分10
2分钟前
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
英俊的铭应助简单山水采纳,获得10
2分钟前
2分钟前
鹿茸与共发布了新的文献求助10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990015
求助须知:如何正确求助?哪些是违规求助? 3532077
关于积分的说明 11256227
捐赠科研通 3270933
什么是DOI,文献DOI怎么找? 1805139
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228