A novel LVPA-UNet network for target volume automatic delineation: an MRI case study of nasopharyngeal carcinoma

鼻咽癌 体积热力学 医学 肿瘤科 核医学 放射科 放射治疗 物理 量子力学
作者
Yu Zhang,Haoran Xu,Junhao Wen,Yujun Hu,Yinliang Diao,Junliang Chen,Yunfei Xia
出处
期刊:Heliyon [Elsevier BV]
卷期号:: e30763-e30763
标识
DOI:10.1016/j.heliyon.2024.e30763
摘要

Accurate delineation of Gross Tumor Volume (GTV) is crucial for radiotherapy. Deep learning-driven GTV segmentation technologies excel in rapidly and accurately delineating GTV, providing a basis for radiologists in formulating radiation plans. The existing 2D and 3D segmentation models of GTV based on deep learning are limited by the loss of spatial features and anisotropy respectively, and are both affected by the variability of tumor characteristics, blurred boundaries, and background interference. All these factors seriously affect the segmentation performance. To address the above issues, a Layer-Volume Parallel Attention (LVPA)-UNet model based on 2D-3D architecture has been proposed in this study, in which three strategies are introduced. Firstly, 2D and 3D workflows are introduced in the LVPA-UNet. They work in parallel and can guide each other. Both the fine features of each slice of 2D MRI and the 3D anatomical structure and spatial features of the tumor can be extracted by them. Secondly, parallel multi-branch depth-wise strip convolutions adapt the model to tumors of varying shapes and sizes within slices and volumetric spaces, and achieve refined processing of blurred boundaries. Lastly, a Layer-Channel Attention mechanism is proposed to adaptively adjust the weights of slices and channels according to their different tumor information, and then to highlight slices and channels with tumor. The experiments by LVPA-UNet on 1010 nasopharyngeal carcinoma (NPC) MRI datasets from three centers show a DSC of 0.7907, precision of 0.7929, recall of 0.8025, and HD95 of 1.8702 mm, outperforming eight typical models. Compared to the baseline model, it improves DSC by 2.14 %, precision by 2.96 %, and recall by 1.01 %, while reducing HD95 by 0.5434 mm. Consequently, while ensuring the efficiency of segmentation through deep learning, LVPA-UNet is able to provide superior GTV delineation results for radiotherapy and offer technical support for precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mc完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
虚幻谷波完成签到,获得积分10
7秒前
ruochenzu发布了新的文献求助10
10秒前
小马甲应助搞怪梦寒采纳,获得10
12秒前
firewood完成签到 ,获得积分10
13秒前
天天快乐应助普鲁卡因采纳,获得10
15秒前
orixero应助NXK采纳,获得10
15秒前
bjr完成签到 ,获得积分10
17秒前
研友_LwlAgn完成签到,获得积分10
21秒前
陈昊完成签到,获得积分10
29秒前
30秒前
tian发布了新的文献求助10
32秒前
35秒前
35秒前
龙舞星完成签到,获得积分10
36秒前
37秒前
王涉发布了新的文献求助10
39秒前
普鲁卡因发布了新的文献求助10
40秒前
量子星尘发布了新的文献求助10
42秒前
柚子完成签到,获得积分10
46秒前
47秒前
马儿饿了要吃草完成签到,获得积分10
47秒前
49秒前
sudor123456完成签到,获得积分10
54秒前
NXK发布了新的文献求助10
54秒前
打打应助普鲁卡因采纳,获得10
57秒前
59秒前
lii完成签到,获得积分10
59秒前
jiaolulu发布了新的文献求助10
1分钟前
个性惜蕊完成签到,获得积分10
1分钟前
1分钟前
轩辕书白完成签到,获得积分10
1分钟前
qinzhikai完成签到,获得积分10
1分钟前
天真的冬瓜完成签到,获得积分10
1分钟前
小溜溜完成签到 ,获得积分10
1分钟前
普鲁卡因发布了新的文献求助10
1分钟前
tian发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022