A novel LVPA-UNet network for target volume automatic delineation: an MRI case study of nasopharyngeal carcinoma

鼻咽癌 体积热力学 医学 肿瘤科 核医学 放射科 放射治疗 物理 量子力学
作者
Yu Zhang,Haoran Xu,Junhao Wen,Yujun Hu,Yinliang Diao,Junliang Chen,Yunfei Xia
出处
期刊:Heliyon [Elsevier]
卷期号:: e30763-e30763
标识
DOI:10.1016/j.heliyon.2024.e30763
摘要

Accurate delineation of Gross Tumor Volume (GTV) is crucial for radiotherapy. Deep learning-driven GTV segmentation technologies excel in rapidly and accurately delineating GTV, providing a basis for radiologists in formulating radiation plans. The existing 2D and 3D segmentation models of GTV based on deep learning are limited by the loss of spatial features and anisotropy respectively, and are both affected by the variability of tumor characteristics, blurred boundaries, and background interference. All these factors seriously affect the segmentation performance. To address the above issues, a Layer-Volume Parallel Attention (LVPA)-UNet model based on 2D-3D architecture has been proposed in this study, in which three strategies are introduced. Firstly, 2D and 3D workflows are introduced in the LVPA-UNet. They work in parallel and can guide each other. Both the fine features of each slice of 2D MRI and the 3D anatomical structure and spatial features of the tumor can be extracted by them. Secondly, parallel multi-branch depth-wise strip convolutions adapt the model to tumors of varying shapes and sizes within slices and volumetric spaces, and achieve refined processing of blurred boundaries. Lastly, a Layer-Channel Attention mechanism is proposed to adaptively adjust the weights of slices and channels according to their different tumor information, and then to highlight slices and channels with tumor. The experiments by LVPA-UNet on 1010 nasopharyngeal carcinoma (NPC) MRI datasets from three centers show a DSC of 0.7907, precision of 0.7929, recall of 0.8025, and HD95 of 1.8702 mm, outperforming eight typical models. Compared to the baseline model, it improves DSC by 2.14 %, precision by 2.96 %, and recall by 1.01 %, while reducing HD95 by 0.5434 mm. Consequently, while ensuring the efficiency of segmentation through deep learning, LVPA-UNet is able to provide superior GTV delineation results for radiotherapy and offer technical support for precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CaoRouLi完成签到,获得积分10
1秒前
共享精神应助叮咚采纳,获得10
2秒前
zhuzhu完成签到 ,获得积分10
2秒前
Cuddly完成签到 ,获得积分10
2秒前
静谧180发布了新的文献求助10
3秒前
赘婿应助hcx采纳,获得10
4秒前
开心超人完成签到,获得积分20
10秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
lyy完成签到 ,获得积分10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
14秒前
DONNYTIO完成签到,获得积分10
17秒前
鲸落发布了新的文献求助20
18秒前
啦啦啦发布了新的文献求助10
18秒前
19秒前
bkagyin应助Shanshan采纳,获得150
19秒前
隐形之玉发布了新的文献求助10
20秒前
YY完成签到 ,获得积分10
21秒前
南上完成签到,获得积分10
22秒前
24秒前
25秒前
秀丽白凝完成签到,获得积分20
25秒前
Hululu完成签到 ,获得积分10
26秒前
大智若于完成签到 ,获得积分10
26秒前
HH应助香烟小厨采纳,获得10
26秒前
lhuh完成签到,获得积分20
27秒前
cjj完成签到,获得积分10
29秒前
winterm发布了新的文献求助10
30秒前
taozhiqi完成签到 ,获得积分10
32秒前
冷傲老九完成签到,获得积分10
33秒前
xiangzq完成签到,获得积分10
33秒前
隐形曼青应助隐形之玉采纳,获得10
33秒前
35秒前
0x1orz完成签到,获得积分10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137627
求助须知:如何正确求助?哪些是违规求助? 2788531
关于积分的说明 7787471
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300119
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023