亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel LVPA-UNet network for target volume automatic delineation: an MRI case study of nasopharyngeal carcinoma

鼻咽癌 体积热力学 医学 肿瘤科 核医学 放射科 放射治疗 物理 量子力学
作者
Yu Zhang,Haoran Xu,Junhao Wen,Yujun Hu,Yinliang Diao,Junliang Chen,Yunfei Xia
出处
期刊:Heliyon [Elsevier BV]
卷期号:: e30763-e30763
标识
DOI:10.1016/j.heliyon.2024.e30763
摘要

Accurate delineation of Gross Tumor Volume (GTV) is crucial for radiotherapy. Deep learning-driven GTV segmentation technologies excel in rapidly and accurately delineating GTV, providing a basis for radiologists in formulating radiation plans. The existing 2D and 3D segmentation models of GTV based on deep learning are limited by the loss of spatial features and anisotropy respectively, and are both affected by the variability of tumor characteristics, blurred boundaries, and background interference. All these factors seriously affect the segmentation performance. To address the above issues, a Layer-Volume Parallel Attention (LVPA)-UNet model based on 2D-3D architecture has been proposed in this study, in which three strategies are introduced. Firstly, 2D and 3D workflows are introduced in the LVPA-UNet. They work in parallel and can guide each other. Both the fine features of each slice of 2D MRI and the 3D anatomical structure and spatial features of the tumor can be extracted by them. Secondly, parallel multi-branch depth-wise strip convolutions adapt the model to tumors of varying shapes and sizes within slices and volumetric spaces, and achieve refined processing of blurred boundaries. Lastly, a Layer-Channel Attention mechanism is proposed to adaptively adjust the weights of slices and channels according to their different tumor information, and then to highlight slices and channels with tumor. The experiments by LVPA-UNet on 1010 nasopharyngeal carcinoma (NPC) MRI datasets from three centers show a DSC of 0.7907, precision of 0.7929, recall of 0.8025, and HD95 of 1.8702 mm, outperforming eight typical models. Compared to the baseline model, it improves DSC by 2.14 %, precision by 2.96 %, and recall by 1.01 %, while reducing HD95 by 0.5434 mm. Consequently, while ensuring the efficiency of segmentation through deep learning, LVPA-UNet is able to provide superior GTV delineation results for radiotherapy and offer technical support for precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_ana发布了新的文献求助10
1秒前
2秒前
彩虹儿应助科研通管家采纳,获得10
7秒前
21秒前
1分钟前
芜湖发布了新的文献求助10
1分钟前
欢呼若南发布了新的文献求助10
1分钟前
芜湖完成签到,获得积分10
1分钟前
田様应助111采纳,获得10
1分钟前
研友_VZG7GZ应助zrm采纳,获得10
1分钟前
量子星尘发布了新的文献求助150
2分钟前
2分钟前
zrm发布了新的文献求助10
2分钟前
小蘑菇应助potato采纳,获得10
3分钟前
机智幻香完成签到 ,获得积分10
3分钟前
4分钟前
JamesPei应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
111发布了新的文献求助10
4分钟前
4分钟前
potato发布了新的文献求助10
4分钟前
4分钟前
幽默香旋完成签到,获得积分10
4分钟前
杜梦婷发布了新的文献求助10
4分钟前
隐形曼青应助杜梦婷采纳,获得10
5分钟前
6分钟前
共享精神应助科研通管家采纳,获得10
6分钟前
靓丽傲玉完成签到 ,获得积分10
6分钟前
6分钟前
mmj发布了新的文献求助10
6分钟前
杜梦婷发布了新的文献求助10
6分钟前
6分钟前
核桃应助mmj采纳,获得10
6分钟前
ww发布了新的文献求助10
6分钟前
烟花应助ww采纳,获得10
6分钟前
科研通AI5应助杜梦婷采纳,获得10
6分钟前
ww完成签到,获得积分10
6分钟前
杜梦婷完成签到,获得积分10
6分钟前
maher完成签到 ,获得积分10
7分钟前
喜悦的小土豆完成签到 ,获得积分10
7分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137647
求助须知:如何正确求助?哪些是违规求助? 4337345
关于积分的说明 13511400
捐赠科研通 4176015
什么是DOI,文献DOI怎么找? 2289822
邀请新用户注册赠送积分活动 1290349
关于科研通互助平台的介绍 1232116