Semi-supervised multi-graph classification using optimal feature selection and extreme learning machine

计算机科学 人工智能 机器学习 特征选择 模式识别(心理学) 极限学习机 图形 分类器(UML) 特征(语言学) 支持向量机 半监督学习 特征学习 监督学习 降维 人工神经网络 数据挖掘
作者
Jun Pang,Yu Gu,Jia Xu,Ge Yu
出处
期刊:Neurocomputing [Elsevier]
卷期号:277: 89-100 被引量:11
标识
DOI:10.1016/j.neucom.2017.01.114
摘要

Abstract A multi-graph is represented by a bag of graphs. Semi-supervised multi-graph classification is a partly supervised learning problem, which has a wide range of applications, such as bio-pharmaceutical activity tests, scientific publication categorization and online product recommendation. However, to the best of our knowledge, few research works have be reported. In this paper, we propose a semi-supervised multi-graph classification algorithm to handle the semi-supervised multi-graph classification problem. Our algorithm consists of three main steps, including the optimal subgraph feature selection, the subgraph feature representation of multi-graph and the semi-supervised classifier building. We first propose an evaluation criterion of the optimal subgraph features, which not only considers unlabeled multi-graphs but also considers the constraints between the multi-graph level and the graph level. Then, the optimal subgraph feature selection problem is equivalently converted into the problem of mining m most informative subgraph features. Based on those derived m subgraph features, every multi-graph is represented by an m -dimensional vector, where the i th dimension equals to 1 if at least one graph involved in the multi-graph contains the i th subgraph feature. At last, based on these vectors, semi-supervised extreme learning machine(semi-supervised ELM) is adopted to build the prediction model for predicting the labels of unseen multi-graphs. Extensive experiments on real-world and synthetic graph datasets show that the proposed algorithm is effective and efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gaohigh完成签到 ,获得积分10
1秒前
1秒前
3秒前
可爱的函函应助gxf采纳,获得10
4秒前
Lucas应助直率的灵枫采纳,获得10
4秒前
红烧茄子完成签到,获得积分10
5秒前
6秒前
刘倩倩完成签到,获得积分20
6秒前
yyt完成签到,获得积分10
6秒前
7秒前
gaohigh发布了新的文献求助10
7秒前
Jasper应助BFUstbc采纳,获得20
7秒前
小林发布了新的文献求助10
7秒前
iTaciturne完成签到,获得积分10
11秒前
DreamMaker完成签到,获得积分10
11秒前
12秒前
yyt发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
berg发布了新的文献求助10
17秒前
乐乐应助四小时充足睡眠采纳,获得10
17秒前
Hermoine发布了新的文献求助10
18秒前
19秒前
JamesPei应助刘倩倩采纳,获得10
20秒前
学渣本渣发布了新的文献求助10
22秒前
23秒前
潇洒的青丝完成签到,获得积分10
23秒前
23秒前
25秒前
科研通AI2S应助曾经的孤萍采纳,获得10
26秒前
26秒前
gxf发布了新的文献求助10
28秒前
长情小鹿完成签到,获得积分10
28秒前
28秒前
风趣的小鸽子完成签到,获得积分10
29秒前
刘丽梅完成签到 ,获得积分10
29秒前
灵巧白风完成签到,获得积分10
29秒前
香蕉觅云应助齐佑龙采纳,获得10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145294
求助须知:如何正确求助?哪些是违规求助? 2796749
关于积分的说明 7821013
捐赠科研通 2453006
什么是DOI,文献DOI怎么找? 1305347
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464