Semi-supervised multi-graph classification using optimal feature selection and extreme learning machine

计算机科学 人工智能 机器学习 特征选择 模式识别(心理学) 极限学习机 图形 分类器(UML) 特征(语言学) 支持向量机 半监督学习 特征学习 监督学习 降维 人工神经网络 数据挖掘
作者
Jun Pang,Yu Gu,Jia Xu,Ge Yu
出处
期刊:Neurocomputing [Elsevier]
卷期号:277: 89-100 被引量:11
标识
DOI:10.1016/j.neucom.2017.01.114
摘要

Abstract A multi-graph is represented by a bag of graphs. Semi-supervised multi-graph classification is a partly supervised learning problem, which has a wide range of applications, such as bio-pharmaceutical activity tests, scientific publication categorization and online product recommendation. However, to the best of our knowledge, few research works have be reported. In this paper, we propose a semi-supervised multi-graph classification algorithm to handle the semi-supervised multi-graph classification problem. Our algorithm consists of three main steps, including the optimal subgraph feature selection, the subgraph feature representation of multi-graph and the semi-supervised classifier building. We first propose an evaluation criterion of the optimal subgraph features, which not only considers unlabeled multi-graphs but also considers the constraints between the multi-graph level and the graph level. Then, the optimal subgraph feature selection problem is equivalently converted into the problem of mining m most informative subgraph features. Based on those derived m subgraph features, every multi-graph is represented by an m -dimensional vector, where the i th dimension equals to 1 if at least one graph involved in the multi-graph contains the i th subgraph feature. At last, based on these vectors, semi-supervised extreme learning machine(semi-supervised ELM) is adopted to build the prediction model for predicting the labels of unseen multi-graphs. Extensive experiments on real-world and synthetic graph datasets show that the proposed algorithm is effective and efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡发布了新的文献求助10
刚刚
zouzou完成签到,获得积分10
1秒前
1秒前
CodeCraft应助FFF采纳,获得10
2秒前
冰河完成签到,获得积分10
2秒前
2秒前
领导范儿应助鱼雷采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
22发布了新的文献求助10
3秒前
3秒前
思源应助科研通管家采纳,获得30
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
可达燊应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
Leif应助科研通管家采纳,获得10
4秒前
shouyu29应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
细心觅风完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
人福药业应助Sunrise采纳,获得10
5秒前
科研人完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762