Semi-supervised multi-graph classification using optimal feature selection and extreme learning machine

计算机科学 人工智能 机器学习 特征选择 子图同构问题 诱导子图同构问题 模式识别(心理学) 极限学习机 距离遗传图 特征向量 因子临界图 图形 分类器(UML) 支持向量机 半监督学习 监督学习 数学 人工神经网络 理论计算机科学 折线图 电压图
作者
Jun Pang,Yu Gu,Jia Xu,Ge Yu
出处
期刊:Neurocomputing [Elsevier]
卷期号:277: 89-100 被引量:18
标识
DOI:10.1016/j.neucom.2017.01.114
摘要

Abstract A multi-graph is represented by a bag of graphs. Semi-supervised multi-graph classification is a partly supervised learning problem, which has a wide range of applications, such as bio-pharmaceutical activity tests, scientific publication categorization and online product recommendation. However, to the best of our knowledge, few research works have be reported. In this paper, we propose a semi-supervised multi-graph classification algorithm to handle the semi-supervised multi-graph classification problem. Our algorithm consists of three main steps, including the optimal subgraph feature selection, the subgraph feature representation of multi-graph and the semi-supervised classifier building. We first propose an evaluation criterion of the optimal subgraph features, which not only considers unlabeled multi-graphs but also considers the constraints between the multi-graph level and the graph level. Then, the optimal subgraph feature selection problem is equivalently converted into the problem of mining m most informative subgraph features. Based on those derived m subgraph features, every multi-graph is represented by an m -dimensional vector, where the i th dimension equals to 1 if at least one graph involved in the multi-graph contains the i th subgraph feature. At last, based on these vectors, semi-supervised extreme learning machine(semi-supervised ELM) is adopted to build the prediction model for predicting the labels of unseen multi-graphs. Extensive experiments on real-world and synthetic graph datasets show that the proposed algorithm is effective and efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浪子发布了新的文献求助10
1秒前
斯文败类应助汪澳采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
西瓜完成签到,获得积分10
2秒前
2秒前
江江好完成签到,获得积分10
2秒前
MCQ发布了新的文献求助10
3秒前
3秒前
盲点发布了新的文献求助10
3秒前
3秒前
AAAAa发布了新的文献求助10
4秒前
正直无极完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
好久不见应助无言采纳,获得10
5秒前
麦地娜发布了新的文献求助10
5秒前
文耳东完成签到,获得积分10
5秒前
6秒前
乐观小之发布了新的文献求助10
6秒前
江江好发布了新的文献求助10
6秒前
Owen应助gan采纳,获得10
6秒前
阿司匹林完成签到,获得积分10
6秒前
6秒前
FIREWORK发布了新的文献求助10
7秒前
Jasper应助wuqi采纳,获得10
7秒前
shu发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
MCQ完成签到,获得积分10
9秒前
浮游应助小太阳采纳,获得10
9秒前
Endless发布了新的文献求助10
9秒前
皮代谷完成签到,获得积分10
9秒前
充电宝应助芝士就是力量采纳,获得10
10秒前
10秒前
ethereal发布了新的文献求助10
10秒前
花粉过敏发布了新的文献求助10
10秒前
斯文123发布了新的文献求助10
10秒前
zmhstb发布了新的文献求助10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049