Semi-supervised multi-graph classification using optimal feature selection and extreme learning machine

计算机科学 人工智能 机器学习 特征选择 子图同构问题 诱导子图同构问题 模式识别(心理学) 极限学习机 距离遗传图 特征向量 因子临界图 图形 分类器(UML) 支持向量机 半监督学习 监督学习 数学 人工神经网络 理论计算机科学 折线图 电压图
作者
Jun Pang,Yu Gu,Jia Xu,Ge Yu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:277: 89-100 被引量:18
标识
DOI:10.1016/j.neucom.2017.01.114
摘要

Abstract A multi-graph is represented by a bag of graphs. Semi-supervised multi-graph classification is a partly supervised learning problem, which has a wide range of applications, such as bio-pharmaceutical activity tests, scientific publication categorization and online product recommendation. However, to the best of our knowledge, few research works have be reported. In this paper, we propose a semi-supervised multi-graph classification algorithm to handle the semi-supervised multi-graph classification problem. Our algorithm consists of three main steps, including the optimal subgraph feature selection, the subgraph feature representation of multi-graph and the semi-supervised classifier building. We first propose an evaluation criterion of the optimal subgraph features, which not only considers unlabeled multi-graphs but also considers the constraints between the multi-graph level and the graph level. Then, the optimal subgraph feature selection problem is equivalently converted into the problem of mining m most informative subgraph features. Based on those derived m subgraph features, every multi-graph is represented by an m -dimensional vector, where the i th dimension equals to 1 if at least one graph involved in the multi-graph contains the i th subgraph feature. At last, based on these vectors, semi-supervised extreme learning machine(semi-supervised ELM) is adopted to build the prediction model for predicting the labels of unseen multi-graphs. Extensive experiments on real-world and synthetic graph datasets show that the proposed algorithm is effective and efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
维护完成签到,获得积分10
刚刚
JamesPei应助chengshaoyan采纳,获得10
1秒前
夕荀发布了新的文献求助10
2秒前
彭日晓发布了新的文献求助10
2秒前
爆辣跳跳糖关注了科研通微信公众号
2秒前
大笨蛋发布了新的文献求助10
2秒前
world完成签到,获得积分10
2秒前
英姑应助孤独丹珍采纳,获得10
3秒前
daisies应助zxq采纳,获得20
3秒前
3秒前
怪胎完成签到,获得积分10
3秒前
领导范儿应助风中谷南采纳,获得10
3秒前
小熵完成签到,获得积分10
4秒前
4秒前
jiaminzhao发布了新的文献求助10
5秒前
5秒前
传奇3应助lixxx采纳,获得10
6秒前
鸣笛应助左丘以云采纳,获得20
7秒前
7秒前
完美春天发布了新的文献求助10
8秒前
8秒前
小花妹妹发布了新的文献求助10
8秒前
sanages发布了新的文献求助10
9秒前
9秒前
My完成签到,获得积分10
10秒前
郦稀完成签到,获得积分10
10秒前
鸭梨发布了新的文献求助10
10秒前
其11发布了新的文献求助10
11秒前
在捂汗发布了新的文献求助10
12秒前
大笨蛋完成签到,获得积分20
12秒前
12秒前
12秒前
13秒前
13秒前
青蛙十字绣00700完成签到,获得积分10
13秒前
Jasper应助执着过客采纳,获得10
14秒前
sanages完成签到,获得积分10
14秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577232
求助须知:如何正确求助?哪些是违规求助? 3996368
关于积分的说明 12372376
捐赠科研通 3670475
什么是DOI,文献DOI怎么找? 2022811
邀请新用户注册赠送积分活动 1056944
科研通“疑难数据库(出版商)”最低求助积分说明 944026