Semi-supervised multi-graph classification using optimal feature selection and extreme learning machine

计算机科学 人工智能 机器学习 特征选择 模式识别(心理学) 极限学习机 图形 分类器(UML) 特征(语言学) 支持向量机 半监督学习 特征学习 监督学习 降维 人工神经网络 数据挖掘
作者
Jun Pang,Yu Gu,Jia Xu,Ge Yu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:277: 89-100 被引量:11
标识
DOI:10.1016/j.neucom.2017.01.114
摘要

Abstract A multi-graph is represented by a bag of graphs. Semi-supervised multi-graph classification is a partly supervised learning problem, which has a wide range of applications, such as bio-pharmaceutical activity tests, scientific publication categorization and online product recommendation. However, to the best of our knowledge, few research works have be reported. In this paper, we propose a semi-supervised multi-graph classification algorithm to handle the semi-supervised multi-graph classification problem. Our algorithm consists of three main steps, including the optimal subgraph feature selection, the subgraph feature representation of multi-graph and the semi-supervised classifier building. We first propose an evaluation criterion of the optimal subgraph features, which not only considers unlabeled multi-graphs but also considers the constraints between the multi-graph level and the graph level. Then, the optimal subgraph feature selection problem is equivalently converted into the problem of mining m most informative subgraph features. Based on those derived m subgraph features, every multi-graph is represented by an m -dimensional vector, where the i th dimension equals to 1 if at least one graph involved in the multi-graph contains the i th subgraph feature. At last, based on these vectors, semi-supervised extreme learning machine(semi-supervised ELM) is adopted to build the prediction model for predicting the labels of unseen multi-graphs. Extensive experiments on real-world and synthetic graph datasets show that the proposed algorithm is effective and efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助机智的然然采纳,获得30
1秒前
璇22发布了新的文献求助10
1秒前
来杯生椰拿铁完成签到,获得积分10
2秒前
闫先生完成签到,获得积分10
2秒前
2秒前
鱼子西完成签到,获得积分10
2秒前
baisefengche完成签到,获得积分20
2秒前
3秒前
寒冷书竹发布了新的文献求助10
4秒前
令人秃头发布了新的文献求助10
5秒前
iyy完成签到,获得积分20
5秒前
LuciusHe发布了新的文献求助10
5秒前
领导范儿应助NNUsusan采纳,获得10
5秒前
搞怪城完成签到,获得积分10
5秒前
水吉水吉完成签到,获得积分10
5秒前
哆啦完成签到,获得积分10
6秒前
ily.发布了新的文献求助10
6秒前
FashionBoy应助科研扫地僧采纳,获得10
6秒前
admin完成签到,获得积分10
6秒前
zzzy完成签到 ,获得积分10
7秒前
7秒前
顺利紫山发布了新的文献求助10
7秒前
pluto应助宁阿霜采纳,获得10
8秒前
无辜紫菜完成签到,获得积分10
10秒前
zhugongwangdawei完成签到,获得积分10
10秒前
admin发布了新的文献求助10
10秒前
10秒前
leodu发布了新的文献求助10
11秒前
芹菜完成签到,获得积分10
11秒前
SHAO应助璇22采纳,获得10
11秒前
11秒前
DDKK发布了新的文献求助50
12秒前
ily.完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
Ava应助胡导家的菜狗采纳,获得10
14秒前
Hi完成签到 ,获得积分10
15秒前
充电宝应助lilianan采纳,获得10
15秒前
lin发布了新的文献求助20
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620