膜
材料科学
化学工程
润湿
中空纤维膜
接触角
静电纺丝
纤维
饮用水净化
聚合物
复合材料
有机化学
化学
生物化学
工程类
作者
Jin‐Jin Li,Yin‐Ning Zhou,Zheng‐Hong Luo
标识
DOI:10.1021/acsami.5b04146
摘要
Wastewater contaminated with oil or organic compounds poses threats to the environment and humans. Efficient separation of oil and water are highly desired yet still challenging. This paper reports the fabrication of a smart fiber membrane by depositing pH-responsive copolymer fibers on a stainless steel mesh through electrospinning. The cost-effective precursor material poly(methyl methacrylate)-block-poly(4-vinylpyridine) (PMMA-b-P4VP) was synthesized using copper(0)-mediated reversible-deactivation radical polymerization. The pH-responsive P4VP and the underwater oleophilic/hydrophilic PMMA confer the as-prepared membrane with switchable surface wettability toward water and oil. The three-dimensional network structure of the fibers considerably strengthens the oil/water wetting property of the membrane, which is highly desirable in the separation of oil and water mixtures. The as-prepared fiber membrane accomplishes gravity-driven pH-controllable oil/water separations. Oil selectively passes through the membrane, whereas water remains at the initial state; after the membrane is wetted with acidic water (pH 3), a reverse separation is realized. Both separations are highly efficient, and the membrane also exhibits switchable wettability after numerous cycles of the separation process. This cost-effective and easily mass-produced smart fiber membrane with excellent oil-fouling repellency has significant potential in practical applications, such as water purification and oil recovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI