Graph Convolutional Network Discrete Hashing for Cross-Modal Retrieval

散列函数 计算机科学 特征哈希 卷积神经网络 理论计算机科学 人工智能 图形 模式识别(心理学) 嵌入 哈希表 机器学习 数据挖掘 双重哈希 计算机安全
作者
Cong Bai,Chao Zeng,Qing Ma,Jinglin Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 4756-4767 被引量:18
标识
DOI:10.1109/tnnls.2022.3174970
摘要

With the rapid development of deep neural networks, cross-modal hashing has made great progress. However, the information of different types of data is asymmetrical, that is to say, if the resolution of an image is high enough, it can reproduce almost 100% of the real-world scenes. However, text usually carries personal emotion and it is not objective enough, so we generally think that the information of image will be much richer than text. Although most of the existing methods unify the semantic feature extraction and hash function learning modules for end-to-end learning, they ignore this issue and do not use information-rich modalities to support information-poor modalities, leading to suboptimal results, although they unify the semantic feature extraction and hash function learning modules for end-to-end learning. Furthermore, previous methods learn hash functions in a relaxed way that causes nontrivial quantization losses. To address these issues, we propose a new method called graph convolutional network (GCN) discrete hashing. This method uses a GCN to bridge the information gap between different types of data. The GCN can represent each label as word embedding, with the embedding regarded as a set of interdependent object classifiers. From these classifiers, we can obtain predicted labels to enhance feature representations across modalities. In addition, we use an efficient discrete optimization strategy to learn the discrete binary codes without relaxation. Extensive experiments conducted on three commonly used datasets demonstrate that our proposed method graph convolutional network-based discrete hashing (GCDH) outperforms the current state-of-the-art cross-modal hashing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Felixsun发布了新的文献求助10
4秒前
HiQ发布了新的文献求助10
4秒前
666发布了新的文献求助10
5秒前
5秒前
隐形曼青应助啦啦啦啦啦采纳,获得10
7秒前
weiwei完成签到,获得积分10
8秒前
9秒前
等待雪瑶关注了科研通微信公众号
9秒前
10秒前
丰富的听云完成签到,获得积分10
12秒前
jzhou88完成签到,获得积分10
13秒前
HiQ完成签到,获得积分0
13秒前
淡淡紫山完成签到,获得积分10
16秒前
16秒前
xiaowu发布了新的文献求助10
16秒前
水水完成签到,获得积分10
16秒前
Good39发布了新的文献求助10
16秒前
FashionBoy应助Felixsun采纳,获得10
17秒前
18秒前
科研小民工应助不懈奋进采纳,获得30
18秒前
20秒前
浅斟低唱发布了新的文献求助10
21秒前
浅笑完成签到,获得积分10
22秒前
科研通AI5应助Good39采纳,获得10
22秒前
占那个完成签到 ,获得积分10
25秒前
25秒前
该房地产个人的完成签到,获得积分10
26秒前
hyhy发布了新的文献求助10
29秒前
充电宝应助科研通管家采纳,获得10
31秒前
领导范儿应助射天狼采纳,获得10
31秒前
1+1应助科研通管家采纳,获得10
31秒前
田様应助科研通管家采纳,获得30
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
小蘑菇应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得30
31秒前
1+1应助科研通管家采纳,获得10
31秒前
小马甲应助科研通管家采纳,获得10
31秒前
刘荻萩应助科研通管家采纳,获得20
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671635
求助须知:如何正确求助?哪些是违规求助? 3228335
关于积分的说明 9779690
捐赠科研通 2938645
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093