Graph Convolutional Network Discrete Hashing for Cross-Modal Retrieval

散列函数 计算机科学 特征哈希 卷积神经网络 理论计算机科学 人工智能 图形 模式识别(心理学) 嵌入 特征提取 哈希表 机器学习 双重哈希 计算机安全
作者
Cong Bai,Chao Zeng,Qing Ma,Jinglin Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 4756-4767 被引量:8
标识
DOI:10.1109/tnnls.2022.3174970
摘要

With the rapid development of deep neural networks, cross-modal hashing has made great progress. However, the information of different types of data is asymmetrical, that is to say, if the resolution of an image is high enough, it can reproduce almost 100% of the real-world scenes. However, text usually carries personal emotion and it is not objective enough, so we generally think that the information of image will be much richer than text. Although most of the existing methods unify the semantic feature extraction and hash function learning modules for end-to-end learning, they ignore this issue and do not use information-rich modalities to support information-poor modalities, leading to suboptimal results, although they unify the semantic feature extraction and hash function learning modules for end-to-end learning. Furthermore, previous methods learn hash functions in a relaxed way that causes nontrivial quantization losses. To address these issues, we propose a new method called graph convolutional network (GCN) discrete hashing. This method uses a GCN to bridge the information gap between different types of data. The GCN can represent each label as word embedding, with the embedding regarded as a set of interdependent object classifiers. From these classifiers, we can obtain predicted labels to enhance feature representations across modalities. In addition, we use an efficient discrete optimization strategy to learn the discrete binary codes without relaxation. Extensive experiments conducted on three commonly used datasets demonstrate that our proposed method graph convolutional network-based discrete hashing (GCDH) outperforms the current state-of-the-art cross-modal hashing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪泥鸿爪发布了新的文献求助10
2秒前
研友_VZG7GZ应助彩色山河采纳,获得10
3秒前
5秒前
慕青应助Alan采纳,获得10
6秒前
佳佳完成签到,获得积分10
7秒前
8秒前
小金毛大人驾到完成签到,获得积分10
9秒前
千日粉发布了新的文献求助10
10秒前
超级泽洋发布了新的文献求助10
11秒前
yuaaaann完成签到,获得积分10
12秒前
艾米发布了新的文献求助10
12秒前
yidezeng完成签到,获得积分10
13秒前
llzuo发布了新的文献求助10
13秒前
研友_Z6k7B8完成签到 ,获得积分10
13秒前
Owen应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得30
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
wanci应助科研通管家采纳,获得30
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
一石二鸟应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
16秒前
亾丄应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
lyjj023发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
千日粉完成签到,获得积分10
19秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141001
求助须知:如何正确求助?哪些是违规求助? 2791912
关于积分的说明 7800960
捐赠科研通 2448184
什么是DOI,文献DOI怎么找? 1302459
科研通“疑难数据库(出版商)”最低求助积分说明 626588
版权声明 601226