Graph Convolutional Network Discrete Hashing for Cross-Modal Retrieval

散列函数 计算机科学 特征哈希 卷积神经网络 理论计算机科学 人工智能 图形 模式识别(心理学) 嵌入 哈希表 机器学习 数据挖掘 双重哈希 计算机安全
作者
Cong Bai,Chao Zeng,Qing Ma,Jinglin Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 4756-4767 被引量:18
标识
DOI:10.1109/tnnls.2022.3174970
摘要

With the rapid development of deep neural networks, cross-modal hashing has made great progress. However, the information of different types of data is asymmetrical, that is to say, if the resolution of an image is high enough, it can reproduce almost 100% of the real-world scenes. However, text usually carries personal emotion and it is not objective enough, so we generally think that the information of image will be much richer than text. Although most of the existing methods unify the semantic feature extraction and hash function learning modules for end-to-end learning, they ignore this issue and do not use information-rich modalities to support information-poor modalities, leading to suboptimal results, although they unify the semantic feature extraction and hash function learning modules for end-to-end learning. Furthermore, previous methods learn hash functions in a relaxed way that causes nontrivial quantization losses. To address these issues, we propose a new method called graph convolutional network (GCN) discrete hashing. This method uses a GCN to bridge the information gap between different types of data. The GCN can represent each label as word embedding, with the embedding regarded as a set of interdependent object classifiers. From these classifiers, we can obtain predicted labels to enhance feature representations across modalities. In addition, we use an efficient discrete optimization strategy to learn the discrete binary codes without relaxation. Extensive experiments conducted on three commonly used datasets demonstrate that our proposed method graph convolutional network-based discrete hashing (GCDH) outperforms the current state-of-the-art cross-modal hashing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助AnJaShua采纳,获得10
刚刚
精明的丹云完成签到,获得积分20
刚刚
乐乐应助专注的煎饼采纳,获得10
刚刚
周周周发布了新的文献求助10
1秒前
1秒前
顾矜应助年轻新晴采纳,获得10
1秒前
cnsnfsafmiima完成签到,获得积分10
1秒前
圆圈发布了新的文献求助10
2秒前
大饼卷肉发布了新的文献求助10
2秒前
zhaoling0503发布了新的文献求助10
2秒前
香蕉觅云应助淡淡的山芙采纳,获得10
2秒前
老板来杯冷咖啡完成签到,获得积分10
3秒前
4秒前
hhhhhhhh发布了新的文献求助20
4秒前
jingjing发布了新的文献求助10
4秒前
阿晓晓完成签到,获得积分10
6秒前
步步完成签到 ,获得积分10
7秒前
9秒前
yuan发布了新的文献求助100
9秒前
杨沛儒发布了新的文献求助10
9秒前
烟花应助极度采纳,获得10
9秒前
Orange应助GL采纳,获得10
9秒前
美丽的依霜完成签到 ,获得积分10
10秒前
Ao发布了新的文献求助10
11秒前
优美若雁完成签到,获得积分10
11秒前
年轻新晴发布了新的文献求助10
13秒前
13秒前
慕青应助杨小黑采纳,获得10
13秒前
树下完成签到,获得积分10
13秒前
13秒前
脑洞疼应助ooo娜采纳,获得10
14秒前
陈陈完成签到,获得积分10
15秒前
zhaoling0503完成签到,获得积分10
15秒前
科研小白完成签到,获得积分10
16秒前
雪白襄关注了科研通微信公众号
16秒前
19秒前
酷波er应助Ao采纳,获得10
19秒前
19秒前
20秒前
xxxxxxxx发布了新的文献求助10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961892
求助须知:如何正确求助?哪些是违规求助? 3508143
关于积分的说明 11139862
捐赠科研通 3240824
什么是DOI,文献DOI怎么找? 1791076
邀请新用户注册赠送积分活动 872725
科研通“疑难数据库(出版商)”最低求助积分说明 803344