Novel YOLOv3 Model With Structure and Hyperparameter Optimization for Detection of Pavement Concealed Cracks in GPR Images

超参数 探地雷达 人工智能 贝叶斯概率 计算机科学 模式识别(心理学) 雷达 数学 电信
作者
Zhen Liu,Xingyu Gu,Hailu Yang,Lutai Wang,Yihan Chen,Danyu Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 22258-22268 被引量:3
标识
DOI:10.1109/tits.2022.3174626
摘要

Accurately identifying and localizing concealed cracks in asphalt pavements through nondestructive ground-penetrating radar (GPR) testing has attracted much attention. However, various realistic factors restrict its detection accuracy. Therefore, this paper proposed a novel YOLOv3 model with a ResNet50vd-deformable convolution (DCN) backbone and a hyperparameter optimization (HPO) method using Bayesian search. First, a 3D-Radar system with multi-channel DXG $^{\mathrm {TM}}$ ground-coupled antenna arrays was used to investigate concealed cracks in the asphalt pavement to establish a crack distress dataset with 366 images and 533 cracks. Then, owing to the small GPR image dataset, a simple semi-supervised label distillation (SSLD) method was employed to obtain the pretrained model. Subsequently, Bayesian searching based HPO was performed to find the maximum mean average precision (mAP) and corresponding hyperparameters in 20 searches. Finally, several mainstream detection models were used for comparisons. Experimental results showed that YOLOv3-ResNet50vd-DCN model converged faster and had a smaller loss value (approximately 0.05) in the training process, which illustrates the advantage of model pretraining with the SSLD method. Besides, the proposed model also achieved good detection results, with 92.6% accuracy, 92.3% F1 score, 92.1% mAP, and 0.923 area under the ROC curve (AUC) value, all 3% to 7% higher than that of the other models. After Bayesian searching for HPO, the detection results were further improved to 94.8% accuracy, 96.2% F1 score, 94.6% mAP, and 0.962 AUC value, validating the reliability and superiority of the proposed model and optimization method in detecting pavement concealed cracks of GPR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助郎治宇采纳,获得10
1秒前
2秒前
3秒前
亮子完成签到,获得积分10
3秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
萧水白应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
李爱国应助LL采纳,获得10
4秒前
周子淦发布了新的文献求助10
5秒前
秦弼发布了新的文献求助10
5秒前
LJJ完成签到,获得积分10
6秒前
7秒前
7秒前
lwh发布了新的文献求助10
9秒前
成就的书包完成签到,获得积分10
9秒前
Skylar发布了新的文献求助10
9秒前
9秒前
坚定的可愁完成签到,获得积分10
10秒前
英姑应助上进生采纳,获得10
10秒前
11秒前
霏冉完成签到,获得积分10
11秒前
cc小木屋应助小学生采纳,获得10
12秒前
14秒前
zxvcbnm发布了新的文献求助10
14秒前
噜噜噜完成签到,获得积分10
14秒前
杨乐多发布了新的文献求助10
14秒前
pluto应助十一采纳,获得10
15秒前
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161332
求助须知:如何正确求助?哪些是违规求助? 2812743
关于积分的说明 7896558
捐赠科研通 2471616
什么是DOI,文献DOI怎么找? 1316066
科研通“疑难数据库(出版商)”最低求助积分说明 631106
版权声明 602112