Novel YOLOv3 Model With Structure and Hyperparameter Optimization for Detection of Pavement Concealed Cracks in GPR Images

超参数 探地雷达 人工智能 贝叶斯概率 计算机科学 模式识别(心理学) 雷达 数学 电信
作者
Zhen Liu,Xingyu Gu,Hailu Yang,Lutai Wang,Yihan Chen,Danyu Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 22258-22268 被引量:3
标识
DOI:10.1109/tits.2022.3174626
摘要

Accurately identifying and localizing concealed cracks in asphalt pavements through nondestructive ground-penetrating radar (GPR) testing has attracted much attention. However, various realistic factors restrict its detection accuracy. Therefore, this paper proposed a novel YOLOv3 model with a ResNet50vd-deformable convolution (DCN) backbone and a hyperparameter optimization (HPO) method using Bayesian search. First, a 3D-Radar system with multi-channel DXG $^{\mathrm {TM}}$ ground-coupled antenna arrays was used to investigate concealed cracks in the asphalt pavement to establish a crack distress dataset with 366 images and 533 cracks. Then, owing to the small GPR image dataset, a simple semi-supervised label distillation (SSLD) method was employed to obtain the pretrained model. Subsequently, Bayesian searching based HPO was performed to find the maximum mean average precision (mAP) and corresponding hyperparameters in 20 searches. Finally, several mainstream detection models were used for comparisons. Experimental results showed that YOLOv3-ResNet50vd-DCN model converged faster and had a smaller loss value (approximately 0.05) in the training process, which illustrates the advantage of model pretraining with the SSLD method. Besides, the proposed model also achieved good detection results, with 92.6% accuracy, 92.3% F1 score, 92.1% mAP, and 0.923 area under the ROC curve (AUC) value, all 3% to 7% higher than that of the other models. After Bayesian searching for HPO, the detection results were further improved to 94.8% accuracy, 96.2% F1 score, 94.6% mAP, and 0.962 AUC value, validating the reliability and superiority of the proposed model and optimization method in detecting pavement concealed cracks of GPR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cora完成签到,获得积分10
1秒前
放眼天下完成签到 ,获得积分10
2秒前
文毛完成签到,获得积分10
2秒前
2秒前
3秒前
兴奋的问旋完成签到,获得积分10
3秒前
张张完成签到,获得积分10
3秒前
陈文学完成签到,获得积分10
4秒前
一一发布了新的文献求助10
4秒前
bkagyin应助潇洒的冷玉采纳,获得10
5秒前
通~发布了新的文献求助10
5秒前
5秒前
芒果完成签到,获得积分10
5秒前
6秒前
cly3397完成签到,获得积分10
6秒前
开心发布了新的文献求助10
6秒前
6秒前
少年发布了新的文献求助10
7秒前
天天快乐应助阿毛采纳,获得10
7秒前
Jenny应助狂野的以珊采纳,获得10
7秒前
8秒前
8秒前
9秒前
10秒前
研友_LMNjkn发布了新的文献求助10
10秒前
ding应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
yizhiGao应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
pinging应助科研通管家采纳,获得10
11秒前
唠叨的月光完成签到,获得积分10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
清爽老九应助科研通管家采纳,获得20
11秒前
科研通AI5应助科研通管家采纳,获得20
11秒前
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794