Socio-economic correlation analysis and hybrid artificial neural network model development for provincial waste electrical and electronic equipment generation forecasting in China

人工神经网络 均方误差 国内生产总值 反向传播 人口 平均绝对百分比误差 工程类 计算机科学 运筹学 统计 人工智能 数学 经济 经济增长 人口学 社会学
作者
Ruiyu Tian,Zheng Xuan Hoy,Peng Yen Liew,Marlia Mohd Hanafiah,Guo Ren Mong,Cheng Tung Chong,Md. Uzzal Hossain,Kok Sin Woon
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:418: 138076-138076 被引量:3
标识
DOI:10.1016/j.jclepro.2023.138076
摘要

Ability to forecast the waste electrical and electronic equipment (WEEE) generation can help formulate a robust future WEEE management system. Previous studies applied forecasting models, such as the grey model and artificial neural networks, to predict WEEE generation from a country perspective, leading to less accurate forecasts due to huge socio-economic differences in rural and urban areas. Additionally, there has been the incompatibility of a single forecasting model for all WEEE types, and this remained a research gap. Taking advantage of respective forecasting models, this study presents a hybrid model, Grey Artificial Neural Network, to forecast the WEEE generation of 31 province-level regions in China while evaluating the socio-economic analysis of seven WEEE types via Pearson correlation analysis. More than 70% of WEEE from province-level regions strongly correlates (R > ±0.8) with the gross domestic product and the population, whereas some top WEEE-generating province-level regions (i.e., Tianjin and Shanghai) correlate weakly to moderately. The root mean square error and mean absolute error of the developed Grey Artificial Neural Network hybrid model are the lowest at 8.29 and 6.48, compared to the grey model (13.53 and 11.13) and back-propagation neural network (9.21 and 7.22). Though the Grey Artificial Neural Network hybrid model has the lowest error, posterior mean square deviation ratio analysis indicates that this hybrid model is only suitable for washing machines, refrigerators, color televisions, and personal computers (urban area), while the back-propagation neural network is suitable for monochrome televisions, air conditioners, and personal computers (rural area). Compared to 2019, it is projected that an additional 32.92 M units of WEEE will be generated by 2025, suggesting that China should build at least 15 extra recycling centers (14% more based on 2016) to handle the increased WEEE generation. This study provides policy implications for effective WEEE monitoring and collection systems to build resilient WEEE management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木一应助花蝴蝶采纳,获得10
刚刚
小邹发布了新的文献求助10
1秒前
李燊发布了新的文献求助10
1秒前
Carroe发布了新的文献求助10
1秒前
帆帆完成签到,获得积分10
1秒前
Accept2024发布了新的文献求助30
2秒前
2秒前
www发布了新的文献求助10
2秒前
2秒前
努力努力再努力完成签到,获得积分10
3秒前
bewh应助dengdengdeng采纳,获得10
3秒前
猪猪hero发布了新的文献求助10
3秒前
慕青应助Jacob采纳,获得10
4秒前
maimu发布了新的文献求助10
4秒前
4秒前
6秒前
舒服的纸飞机完成签到,获得积分10
6秒前
6秒前
legendh完成签到,获得积分10
7秒前
洁净的半鬼完成签到,获得积分20
7秒前
GAS完成签到,获得积分10
7秒前
这种发布了新的文献求助10
8秒前
Akim应助夜雨听风眠z采纳,获得10
8秒前
9秒前
9秒前
aaazx666发布了新的文献求助10
10秒前
火星上楷瑞完成签到,获得积分10
10秒前
Dark_Moon完成签到,获得积分10
10秒前
maox1aoxin应助铁手无情采纳,获得30
10秒前
David完成签到,获得积分10
10秒前
大营村完成签到,获得积分10
10秒前
GAS发布了新的文献求助10
11秒前
研友_VZG7GZ应助朱权圣采纳,获得10
12秒前
共享精神应助含糊的文涛采纳,获得10
13秒前
海带带发布了新的文献求助10
13秒前
小马甲应助mk_smile采纳,获得10
14秒前
姬鲁宁完成签到 ,获得积分10
14秒前
14秒前
14秒前
curry完成签到,获得积分10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747915
求助须知:如何正确求助?哪些是违规求助? 3290739
关于积分的说明 10070743
捐赠科研通 3006635
什么是DOI,文献DOI怎么找? 1651226
邀请新用户注册赠送积分活动 786286
科研通“疑难数据库(出版商)”最低求助积分说明 751596