Enhancing climate resilience in businesses: The role of artificial intelligence

气候变化 极端天气 环境资源管理 心理弹性 气候弹性 气候风险 业务 风险管理 弹性(材料科学) 环境科学 风险分析(工程) 自然资源经济学 经济 生态学 财务 心理学 物理 心理治疗师 生物 热力学
作者
Shivam Singh,Manish Kumar Goyal
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:418: 138228-138228 被引量:55
标识
DOI:10.1016/j.jclepro.2023.138228
摘要

The abrupt rise in extreme weather events (floods, heat waves, droughts, etc.) due to changing climate in the last decades has increased the level of threats to various sectors (agriculture, energy, transportation, etc.) globally. The climate projections from global circulation models indicate even more intense and frequent extreme events in the future, which in turn pose more risks to socioeconomic infrastructure. The enhanced understanding of the climate-related financial risk associated with businesses has driven efforts to include critical information on probable risks associated with climate change in financial decision-making. In this study, we have presented a framework to assess the need of incorporating climate risk assessment as an integral part of business operations. We also reviewed revealed literature to understand the possible impacts of climate change on various sectors and presented key strategies to assess the climate risk associated with them. Also, a framework incorporating probable climate threats to business ecology with principles of robustness, resourcefulness, redundancy, and rapidity has been proposed to adapt and mitigate associated risks for a climate-resilient business ecosystem. The integration of Artificial Intelligence in managing risk could be a promising tool for enhancing business resilience to climate change and could be used as a tool. Robust and accurate predictions of climate and weather extremes from deep learning algorithms at a significant lead time can help in minimizing the associated risk with a business infrastructure. Atmospheric Rivers (ARs), a weather extreme cause huge socioeconomic risk by triggering floods and droughts in various continents of mid-latitude regions. We have presented a case study investigating the ability of deep learning algorithms to predict ARs. The results from the analysis advocate the application of deep learning algorithms to predict weather and climate extremes in decision support systems to enhance the climate resilience of a business ecosystem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝桉完成签到 ,获得积分10
1秒前
风笛完成签到 ,获得积分10
8秒前
cq_2完成签到,获得积分0
14秒前
111完成签到 ,获得积分10
16秒前
炎炎夏无声完成签到 ,获得积分10
19秒前
Hindiii完成签到,获得积分10
19秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
深情安青应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
哈哈哈完成签到 ,获得积分10
30秒前
zndxlsb完成签到,获得积分10
38秒前
龚瑶完成签到 ,获得积分10
39秒前
洸彦完成签到 ,获得积分10
47秒前
48秒前
flyingpig发布了新的文献求助10
49秒前
默默完成签到 ,获得积分10
53秒前
zndxlsb发布了新的文献求助10
55秒前
Research完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
flyingpig发布了新的文献求助10
1分钟前
huanir99发布了新的文献求助80
1分钟前
时光不旧只是满尘灰完成签到 ,获得积分10
1分钟前
xu发布了新的文献求助10
1分钟前
Singularity完成签到,获得积分0
1分钟前
辛勤的喉完成签到 ,获得积分10
1分钟前
贝贝完成签到 ,获得积分10
1分钟前
zozox完成签到 ,获得积分10
1分钟前
等待小丸子完成签到,获得积分10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
1分钟前
仰望星空发布了新的文献求助10
2分钟前
IShowSpeed完成签到,获得积分10
2分钟前
偷得浮生半日闲完成签到,获得积分10
2分钟前
忆茶戏完成签到 ,获得积分10
2分钟前
carl完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650009
关于积分的说明 14689401
捐赠科研通 4591860
什么是DOI,文献DOI怎么找? 2519386
邀请新用户注册赠送积分活动 1491920
关于科研通互助平台的介绍 1463118