Enhancing climate resilience in businesses: The role of artificial intelligence

气候变化 极端天气 环境资源管理 心理弹性 气候弹性 气候风险 业务 风险管理 弹性(材料科学) 环境科学 风险分析(工程) 自然资源经济学 经济 生态学 财务 热力学 生物 物理 心理治疗师 心理学
作者
Shivam Singh,Manish Kumar Goyal
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:418: 138228-138228 被引量:55
标识
DOI:10.1016/j.jclepro.2023.138228
摘要

The abrupt rise in extreme weather events (floods, heat waves, droughts, etc.) due to changing climate in the last decades has increased the level of threats to various sectors (agriculture, energy, transportation, etc.) globally. The climate projections from global circulation models indicate even more intense and frequent extreme events in the future, which in turn pose more risks to socioeconomic infrastructure. The enhanced understanding of the climate-related financial risk associated with businesses has driven efforts to include critical information on probable risks associated with climate change in financial decision-making. In this study, we have presented a framework to assess the need of incorporating climate risk assessment as an integral part of business operations. We also reviewed revealed literature to understand the possible impacts of climate change on various sectors and presented key strategies to assess the climate risk associated with them. Also, a framework incorporating probable climate threats to business ecology with principles of robustness, resourcefulness, redundancy, and rapidity has been proposed to adapt and mitigate associated risks for a climate-resilient business ecosystem. The integration of Artificial Intelligence in managing risk could be a promising tool for enhancing business resilience to climate change and could be used as a tool. Robust and accurate predictions of climate and weather extremes from deep learning algorithms at a significant lead time can help in minimizing the associated risk with a business infrastructure. Atmospheric Rivers (ARs), a weather extreme cause huge socioeconomic risk by triggering floods and droughts in various continents of mid-latitude regions. We have presented a case study investigating the ability of deep learning algorithms to predict ARs. The results from the analysis advocate the application of deep learning algorithms to predict weather and climate extremes in decision support systems to enhance the climate resilience of a business ecosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿滕完成签到,获得积分10
刚刚
Akim应助Lesile采纳,获得10
1秒前
livian完成签到,获得积分10
1秒前
庄建煌发布了新的文献求助10
1秒前
2秒前
2秒前
茜茜完成签到,获得积分10
3秒前
柚子应助芒果柠檬采纳,获得20
3秒前
白糖发布了新的文献求助10
3秒前
王肖完成签到 ,获得积分10
3秒前
道听途说完成签到 ,获得积分10
3秒前
共享精神应助紫薰采纳,获得10
4秒前
云朵0810发布了新的文献求助10
4秒前
从容芸完成签到,获得积分10
4秒前
清茶韵心发布了新的文献求助10
4秒前
4秒前
4秒前
亭曈完成签到,获得积分10
5秒前
慕青应助哇奥采纳,获得10
5秒前
6秒前
旺仔冰激凌完成签到,获得积分10
6秒前
扶瑶可接发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
姜林伟发布了新的文献求助10
7秒前
kjz发布了新的文献求助10
7秒前
7秒前
7秒前
LHW完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
王逗逗发布了新的文献求助10
9秒前
冬瓜熊发布了新的文献求助10
9秒前
一航完成签到,获得积分20
9秒前
万能图书馆应助Layla101采纳,获得10
9秒前
10秒前
小灰发布了新的文献求助200
10秒前
嘻嘻完成签到,获得积分0
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351821
求助须知:如何正确求助?哪些是违规求助? 4484784
关于积分的说明 13960373
捐赠科研通 4384451
什么是DOI,文献DOI怎么找? 2408942
邀请新用户注册赠送积分活动 1401489
关于科研通互助平台的介绍 1375007