Enhancing climate resilience in businesses: The role of artificial intelligence

气候变化 极端天气 环境资源管理 心理弹性 气候弹性 气候风险 业务 风险管理 弹性(材料科学) 环境科学 风险分析(工程) 自然资源经济学 经济 生态学 财务 心理学 物理 心理治疗师 生物 热力学
作者
Shivam Singh,Manish Kumar Goyal
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:418: 138228-138228 被引量:7
标识
DOI:10.1016/j.jclepro.2023.138228
摘要

The abrupt rise in extreme weather events (floods, heat waves, droughts, etc.) due to changing climate in the last decades has increased the level of threats to various sectors (agriculture, energy, transportation, etc.) globally. The climate projections from global circulation models indicate even more intense and frequent extreme events in the future, which in turn pose more risks to socioeconomic infrastructure. The enhanced understanding of the climate-related financial risk associated with businesses has driven efforts to include critical information on probable risks associated with climate change in financial decision-making. In this study, we have presented a framework to assess the need of incorporating climate risk assessment as an integral part of business operations. We also reviewed revealed literature to understand the possible impacts of climate change on various sectors and presented key strategies to assess the climate risk associated with them. Also, a framework incorporating probable climate threats to business ecology with principles of robustness, resourcefulness, redundancy, and rapidity has been proposed to adapt and mitigate associated risks for a climate-resilient business ecosystem. The integration of Artificial Intelligence in managing risk could be a promising tool for enhancing business resilience to climate change and could be used as a tool. Robust and accurate predictions of climate and weather extremes from deep learning algorithms at a significant lead time can help in minimizing the associated risk with a business infrastructure. Atmospheric Rivers (ARs), a weather extreme cause huge socioeconomic risk by triggering floods and droughts in various continents of mid-latitude regions. We have presented a case study investigating the ability of deep learning algorithms to predict ARs. The results from the analysis advocate the application of deep learning algorithms to predict weather and climate extremes in decision support systems to enhance the climate resilience of a business ecosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夕痕完成签到,获得积分10
1秒前
完美世界应助Pony12138采纳,获得10
1秒前
1秒前
沙与沫完成签到 ,获得积分10
2秒前
Hello应助appapp采纳,获得10
3秒前
SSS木南完成签到,获得积分10
3秒前
占那个完成签到 ,获得积分10
3秒前
qi完成签到,获得积分10
4秒前
科研通AI2S应助zzz采纳,获得10
4秒前
4秒前
4秒前
舒适眼睛完成签到,获得积分10
5秒前
风的味道完成签到,获得积分10
6秒前
雪白的夜香完成签到,获得积分10
6秒前
临江仙完成签到 ,获得积分10
6秒前
江幻天发布了新的文献求助10
7秒前
阳光的道消完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
开心的白昼完成签到,获得积分10
10秒前
远古遗迹完成签到,获得积分10
10秒前
喜欢皮卡丘的贾同学完成签到,获得积分10
10秒前
buxixi完成签到,获得积分20
10秒前
李子完成签到,获得积分10
12秒前
因为完成签到 ,获得积分10
12秒前
jia完成签到 ,获得积分10
13秒前
CaliU完成签到,获得积分10
13秒前
Sunshine发布了新的文献求助10
14秒前
zzz完成签到,获得积分10
14秒前
jcduoduo完成签到,获得积分10
14秒前
Pony12138完成签到,获得积分10
16秒前
bkagyin应助暴躁的洋葱采纳,获得10
16秒前
strama完成签到,获得积分10
17秒前
zhenliu完成签到 ,获得积分10
17秒前
DKO253完成签到,获得积分10
17秒前
shiyin完成签到,获得积分10
17秒前
buxixi发布了新的文献求助10
19秒前
慕青应助Doctor采纳,获得10
20秒前
grmqgq完成签到,获得积分10
21秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434921
求助须知:如何正确求助?哪些是违规求助? 3032242
关于积分的说明 8945048
捐赠科研通 2720239
什么是DOI,文献DOI怎么找? 1492200
科研通“疑难数据库(出版商)”最低求助积分说明 689735
邀请新用户注册赠送积分活动 685898