清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Enhancing climate resilience in businesses: The role of artificial intelligence

气候变化 极端天气 环境资源管理 心理弹性 气候弹性 气候风险 业务 风险管理 弹性(材料科学) 环境科学 风险分析(工程) 自然资源经济学 经济 生态学 财务 心理学 物理 心理治疗师 生物 热力学
作者
Shivam Singh,Manish Kumar Goyal
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:418: 138228-138228 被引量:55
标识
DOI:10.1016/j.jclepro.2023.138228
摘要

The abrupt rise in extreme weather events (floods, heat waves, droughts, etc.) due to changing climate in the last decades has increased the level of threats to various sectors (agriculture, energy, transportation, etc.) globally. The climate projections from global circulation models indicate even more intense and frequent extreme events in the future, which in turn pose more risks to socioeconomic infrastructure. The enhanced understanding of the climate-related financial risk associated with businesses has driven efforts to include critical information on probable risks associated with climate change in financial decision-making. In this study, we have presented a framework to assess the need of incorporating climate risk assessment as an integral part of business operations. We also reviewed revealed literature to understand the possible impacts of climate change on various sectors and presented key strategies to assess the climate risk associated with them. Also, a framework incorporating probable climate threats to business ecology with principles of robustness, resourcefulness, redundancy, and rapidity has been proposed to adapt and mitigate associated risks for a climate-resilient business ecosystem. The integration of Artificial Intelligence in managing risk could be a promising tool for enhancing business resilience to climate change and could be used as a tool. Robust and accurate predictions of climate and weather extremes from deep learning algorithms at a significant lead time can help in minimizing the associated risk with a business infrastructure. Atmospheric Rivers (ARs), a weather extreme cause huge socioeconomic risk by triggering floods and droughts in various continents of mid-latitude regions. We have presented a case study investigating the ability of deep learning algorithms to predict ARs. The results from the analysis advocate the application of deep learning algorithms to predict weather and climate extremes in decision support systems to enhance the climate resilience of a business ecosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助lanxinge采纳,获得10
7秒前
Barid完成签到,获得积分10
37秒前
刘刘完成签到 ,获得积分10
41秒前
zhanlang完成签到 ,获得积分10
51秒前
谨慎的元冬完成签到 ,获得积分10
51秒前
爱上阳光的鱼完成签到 ,获得积分10
1分钟前
牙瓜完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
1分钟前
mia发布了新的文献求助10
1分钟前
1分钟前
1分钟前
lanxinge发布了新的文献求助10
1分钟前
大模型应助lanxinge采纳,获得10
1分钟前
ldjldj_2004完成签到 ,获得积分10
2分钟前
sysi完成签到 ,获得积分10
2分钟前
WenJun完成签到,获得积分10
2分钟前
Sunny完成签到,获得积分10
2分钟前
缥缈完成签到 ,获得积分10
2分钟前
2分钟前
lanxinge发布了新的文献求助10
2分钟前
3分钟前
天天快乐应助科研通管家采纳,获得10
3分钟前
comeanddo应助科研通管家采纳,获得10
3分钟前
3分钟前
酷波er应助lanxinge采纳,获得10
3分钟前
huanghe完成签到,获得积分10
4分钟前
4分钟前
lanxinge发布了新的文献求助10
4分钟前
HiDasiy完成签到 ,获得积分10
4分钟前
yq发布了新的文献求助10
4分钟前
深情安青应助lanxinge采纳,获得10
4分钟前
mia完成签到,获得积分10
5分钟前
沙海沉戈完成签到,获得积分0
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
5分钟前
慕青应助幻梦如歌采纳,获得10
5分钟前
lanxinge发布了新的文献求助10
5分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746201
求助须知:如何正确求助?哪些是违规求助? 3289015
关于积分的说明 10061744
捐赠科研通 3005280
什么是DOI,文献DOI怎么找? 1650186
邀请新用户注册赠送积分活动 785753
科研通“疑难数据库(出版商)”最低求助积分说明 751258