Enhancing climate resilience in businesses: The role of artificial intelligence

气候变化 极端天气 环境资源管理 心理弹性 气候弹性 气候风险 业务 风险管理 弹性(材料科学) 环境科学 风险分析(工程) 自然资源经济学 经济 生态学 财务 热力学 生物 物理 心理治疗师 心理学
作者
Shivam Singh,Manish Kumar Goyal
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:418: 138228-138228 被引量:55
标识
DOI:10.1016/j.jclepro.2023.138228
摘要

The abrupt rise in extreme weather events (floods, heat waves, droughts, etc.) due to changing climate in the last decades has increased the level of threats to various sectors (agriculture, energy, transportation, etc.) globally. The climate projections from global circulation models indicate even more intense and frequent extreme events in the future, which in turn pose more risks to socioeconomic infrastructure. The enhanced understanding of the climate-related financial risk associated with businesses has driven efforts to include critical information on probable risks associated with climate change in financial decision-making. In this study, we have presented a framework to assess the need of incorporating climate risk assessment as an integral part of business operations. We also reviewed revealed literature to understand the possible impacts of climate change on various sectors and presented key strategies to assess the climate risk associated with them. Also, a framework incorporating probable climate threats to business ecology with principles of robustness, resourcefulness, redundancy, and rapidity has been proposed to adapt and mitigate associated risks for a climate-resilient business ecosystem. The integration of Artificial Intelligence in managing risk could be a promising tool for enhancing business resilience to climate change and could be used as a tool. Robust and accurate predictions of climate and weather extremes from deep learning algorithms at a significant lead time can help in minimizing the associated risk with a business infrastructure. Atmospheric Rivers (ARs), a weather extreme cause huge socioeconomic risk by triggering floods and droughts in various continents of mid-latitude regions. We have presented a case study investigating the ability of deep learning algorithms to predict ARs. The results from the analysis advocate the application of deep learning algorithms to predict weather and climate extremes in decision support systems to enhance the climate resilience of a business ecosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SY15732023811完成签到 ,获得积分10
1秒前
李建勋完成签到,获得积分10
1秒前
科研通AI2S应助一路芬芳采纳,获得10
1秒前
黄花完成签到 ,获得积分10
2秒前
刘珍荣完成签到,获得积分10
3秒前
3秒前
紫金之巅完成签到 ,获得积分10
3秒前
Gang完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
CYYDNDB完成签到 ,获得积分10
6秒前
粿粿一定行完成签到 ,获得积分10
7秒前
8秒前
战战完成签到,获得积分10
9秒前
xlk2222完成签到,获得积分10
12秒前
笨笨以莲完成签到,获得积分10
12秒前
YHX完成签到,获得积分10
13秒前
沐沐心完成签到 ,获得积分10
14秒前
14秒前
15秒前
哭泣笑柳发布了新的文献求助10
15秒前
轻松白桃完成签到,获得积分10
15秒前
JasVe完成签到 ,获得积分10
18秒前
wakkkkk完成签到,获得积分10
18秒前
含蓄听南完成签到,获得积分10
18秒前
HH给HH的求助进行了留言
18秒前
芋你呀完成签到,获得积分10
19秒前
西蓝花香菜完成签到 ,获得积分10
19秒前
无花果应助兔子采纳,获得10
19秒前
请勿继续完成签到,获得积分10
21秒前
搞怪的婴完成签到,获得积分10
22秒前
Loooong完成签到,获得积分0
22秒前
24秒前
fuguier完成签到,获得积分10
26秒前
大橙子发布了新的文献求助10
26秒前
王旭完成签到,获得积分10
28秒前
轻松白桃发布了新的文献求助10
28秒前
28秒前
Distance发布了新的文献求助10
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022