Enhancing climate resilience in businesses: The role of artificial intelligence

气候变化 极端天气 环境资源管理 心理弹性 气候弹性 气候风险 业务 风险管理 弹性(材料科学) 环境科学 风险分析(工程) 自然资源经济学 经济 生态学 财务 热力学 生物 物理 心理治疗师 心理学
作者
Shivam Singh,Manish Kumar Goyal
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:418: 138228-138228 被引量:55
标识
DOI:10.1016/j.jclepro.2023.138228
摘要

The abrupt rise in extreme weather events (floods, heat waves, droughts, etc.) due to changing climate in the last decades has increased the level of threats to various sectors (agriculture, energy, transportation, etc.) globally. The climate projections from global circulation models indicate even more intense and frequent extreme events in the future, which in turn pose more risks to socioeconomic infrastructure. The enhanced understanding of the climate-related financial risk associated with businesses has driven efforts to include critical information on probable risks associated with climate change in financial decision-making. In this study, we have presented a framework to assess the need of incorporating climate risk assessment as an integral part of business operations. We also reviewed revealed literature to understand the possible impacts of climate change on various sectors and presented key strategies to assess the climate risk associated with them. Also, a framework incorporating probable climate threats to business ecology with principles of robustness, resourcefulness, redundancy, and rapidity has been proposed to adapt and mitigate associated risks for a climate-resilient business ecosystem. The integration of Artificial Intelligence in managing risk could be a promising tool for enhancing business resilience to climate change and could be used as a tool. Robust and accurate predictions of climate and weather extremes from deep learning algorithms at a significant lead time can help in minimizing the associated risk with a business infrastructure. Atmospheric Rivers (ARs), a weather extreme cause huge socioeconomic risk by triggering floods and droughts in various continents of mid-latitude regions. We have presented a case study investigating the ability of deep learning algorithms to predict ARs. The results from the analysis advocate the application of deep learning algorithms to predict weather and climate extremes in decision support systems to enhance the climate resilience of a business ecosystem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xh完成签到 ,获得积分10
1秒前
1秒前
科目三应助actor2006采纳,获得10
2秒前
2秒前
2秒前
2秒前
wtldkz发布了新的文献求助10
3秒前
zhoutian发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
zhou_完成签到,获得积分10
4秒前
科研通AI6应助朴实曼岚采纳,获得10
4秒前
领导范儿应助汀汀采纳,获得10
4秒前
此木本去一应助tomato采纳,获得10
4秒前
5秒前
所所应助Shinchan采纳,获得10
5秒前
BDH完成签到,获得积分20
6秒前
香菜头发布了新的文献求助10
6秒前
林珍发布了新的文献求助10
6秒前
SQDHZJ发布了新的文献求助10
7秒前
GG波波发布了新的文献求助10
9秒前
吴筮发布了新的文献求助10
9秒前
深情安青应助姜萌萌采纳,获得10
10秒前
niumi190完成签到,获得积分0
11秒前
11231发布了新的文献求助10
11秒前
斯文败类应助平淡夏云采纳,获得10
12秒前
gz发布了新的文献求助10
12秒前
13秒前
科研通AI6应助Shinchan采纳,获得10
13秒前
牛牛最棒完成签到 ,获得积分10
13秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
17秒前
小蘑菇应助wtldkz采纳,获得10
17秒前
默默的妙竹完成签到 ,获得积分10
17秒前
裴果发布了新的文献求助10
18秒前
Paul111发布了新的文献求助10
19秒前
20秒前
Jes发布了新的文献求助30
20秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715