Enhancing climate resilience in businesses: The role of artificial intelligence

气候变化 极端天气 环境资源管理 心理弹性 气候弹性 气候风险 业务 风险管理 弹性(材料科学) 环境科学 风险分析(工程) 自然资源经济学 经济 生态学 财务 热力学 生物 物理 心理治疗师 心理学
作者
Shivam Singh,Manish Kumar Goyal
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:418: 138228-138228 被引量:55
标识
DOI:10.1016/j.jclepro.2023.138228
摘要

The abrupt rise in extreme weather events (floods, heat waves, droughts, etc.) due to changing climate in the last decades has increased the level of threats to various sectors (agriculture, energy, transportation, etc.) globally. The climate projections from global circulation models indicate even more intense and frequent extreme events in the future, which in turn pose more risks to socioeconomic infrastructure. The enhanced understanding of the climate-related financial risk associated with businesses has driven efforts to include critical information on probable risks associated with climate change in financial decision-making. In this study, we have presented a framework to assess the need of incorporating climate risk assessment as an integral part of business operations. We also reviewed revealed literature to understand the possible impacts of climate change on various sectors and presented key strategies to assess the climate risk associated with them. Also, a framework incorporating probable climate threats to business ecology with principles of robustness, resourcefulness, redundancy, and rapidity has been proposed to adapt and mitigate associated risks for a climate-resilient business ecosystem. The integration of Artificial Intelligence in managing risk could be a promising tool for enhancing business resilience to climate change and could be used as a tool. Robust and accurate predictions of climate and weather extremes from deep learning algorithms at a significant lead time can help in minimizing the associated risk with a business infrastructure. Atmospheric Rivers (ARs), a weather extreme cause huge socioeconomic risk by triggering floods and droughts in various continents of mid-latitude regions. We have presented a case study investigating the ability of deep learning algorithms to predict ARs. The results from the analysis advocate the application of deep learning algorithms to predict weather and climate extremes in decision support systems to enhance the climate resilience of a business ecosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耳百完成签到,获得积分10
刚刚
2秒前
3秒前
4秒前
5秒前
5秒前
CR7应助越啊采纳,获得20
6秒前
李健应助123采纳,获得10
7秒前
Jun完成签到,获得积分10
8秒前
大反应釜发布了新的文献求助10
8秒前
淳于安筠发布了新的文献求助30
11秒前
柳叶洋完成签到,获得积分10
11秒前
下一秒发布了新的文献求助10
14秒前
15秒前
16秒前
无花果应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得30
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得30
16秒前
Jasper应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
17秒前
Ava应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
17秒前
SYLH应助shensiang采纳,获得20
18秒前
专一的从波完成签到 ,获得积分10
18秒前
领导范儿应助msjs采纳,获得30
18秒前
量子星尘发布了新的文献求助10
20秒前
安静的幼旋完成签到,获得积分10
21秒前
21秒前
白石溪发布了新的文献求助10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174