Enhancing climate resilience in businesses: The role of artificial intelligence

气候变化 极端天气 环境资源管理 心理弹性 气候弹性 气候风险 业务 风险管理 弹性(材料科学) 环境科学 风险分析(工程) 自然资源经济学 经济 生态学 财务 热力学 生物 物理 心理治疗师 心理学
作者
Shivam Singh,Manish Kumar Goyal
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:418: 138228-138228 被引量:55
标识
DOI:10.1016/j.jclepro.2023.138228
摘要

The abrupt rise in extreme weather events (floods, heat waves, droughts, etc.) due to changing climate in the last decades has increased the level of threats to various sectors (agriculture, energy, transportation, etc.) globally. The climate projections from global circulation models indicate even more intense and frequent extreme events in the future, which in turn pose more risks to socioeconomic infrastructure. The enhanced understanding of the climate-related financial risk associated with businesses has driven efforts to include critical information on probable risks associated with climate change in financial decision-making. In this study, we have presented a framework to assess the need of incorporating climate risk assessment as an integral part of business operations. We also reviewed revealed literature to understand the possible impacts of climate change on various sectors and presented key strategies to assess the climate risk associated with them. Also, a framework incorporating probable climate threats to business ecology with principles of robustness, resourcefulness, redundancy, and rapidity has been proposed to adapt and mitigate associated risks for a climate-resilient business ecosystem. The integration of Artificial Intelligence in managing risk could be a promising tool for enhancing business resilience to climate change and could be used as a tool. Robust and accurate predictions of climate and weather extremes from deep learning algorithms at a significant lead time can help in minimizing the associated risk with a business infrastructure. Atmospheric Rivers (ARs), a weather extreme cause huge socioeconomic risk by triggering floods and droughts in various continents of mid-latitude regions. We have presented a case study investigating the ability of deep learning algorithms to predict ARs. The results from the analysis advocate the application of deep learning algorithms to predict weather and climate extremes in decision support systems to enhance the climate resilience of a business ecosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Su发布了新的文献求助10
刚刚
情怀应助tyx采纳,获得10
1秒前
ll完成签到 ,获得积分10
1秒前
冷静新烟完成签到 ,获得积分10
1秒前
蔺阁完成签到,获得积分20
2秒前
2秒前
斯文败类应助刘刘采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
小马甲应助沙滩的收印采纳,获得10
4秒前
鲤跃完成签到,获得积分10
4秒前
4秒前
万能图书馆应助coster采纳,获得10
5秒前
5秒前
5秒前
5秒前
蒸蒸日上完成签到,获得积分10
6秒前
6秒前
从容雪冥发布了新的文献求助10
6秒前
wxd完成签到,获得积分10
6秒前
hhj完成签到,获得积分10
6秒前
豆豆完成签到,获得积分10
7秒前
陈某人完成签到,获得积分10
7秒前
打打应助向北游采纳,获得10
7秒前
尊敬若云完成签到 ,获得积分10
7秒前
Huang_Liuying发布了新的文献求助10
7秒前
猪猪发布了新的文献求助10
7秒前
赘婿应助鲤跃采纳,获得10
7秒前
lizy完成签到,获得积分10
7秒前
HonamC完成签到,获得积分10
7秒前
smile发布了新的文献求助10
8秒前
寻北意完成签到,获得积分10
8秒前
8秒前
chuhong完成签到 ,获得积分10
8秒前
caterpillar完成签到,获得积分10
9秒前
9秒前
李清竹发布了新的文献求助10
9秒前
科研通AI5应助李丽冰采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001275
求助须知:如何正确求助?哪些是违规求助? 4246504
关于积分的说明 13229609
捐赠科研通 4045157
什么是DOI,文献DOI怎么找? 2212990
邀请新用户注册赠送积分活动 1223162
关于科研通互助平台的介绍 1143474