Enhancing climate resilience in businesses: The role of artificial intelligence

气候变化 极端天气 环境资源管理 心理弹性 气候弹性 气候风险 业务 风险管理 弹性(材料科学) 环境科学 风险分析(工程) 自然资源经济学 经济 生态学 财务 心理学 物理 心理治疗师 生物 热力学
作者
Shivam Singh,Manish Kumar Goyal
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:418: 138228-138228 被引量:55
标识
DOI:10.1016/j.jclepro.2023.138228
摘要

The abrupt rise in extreme weather events (floods, heat waves, droughts, etc.) due to changing climate in the last decades has increased the level of threats to various sectors (agriculture, energy, transportation, etc.) globally. The climate projections from global circulation models indicate even more intense and frequent extreme events in the future, which in turn pose more risks to socioeconomic infrastructure. The enhanced understanding of the climate-related financial risk associated with businesses has driven efforts to include critical information on probable risks associated with climate change in financial decision-making. In this study, we have presented a framework to assess the need of incorporating climate risk assessment as an integral part of business operations. We also reviewed revealed literature to understand the possible impacts of climate change on various sectors and presented key strategies to assess the climate risk associated with them. Also, a framework incorporating probable climate threats to business ecology with principles of robustness, resourcefulness, redundancy, and rapidity has been proposed to adapt and mitigate associated risks for a climate-resilient business ecosystem. The integration of Artificial Intelligence in managing risk could be a promising tool for enhancing business resilience to climate change and could be used as a tool. Robust and accurate predictions of climate and weather extremes from deep learning algorithms at a significant lead time can help in minimizing the associated risk with a business infrastructure. Atmospheric Rivers (ARs), a weather extreme cause huge socioeconomic risk by triggering floods and droughts in various continents of mid-latitude regions. We have presented a case study investigating the ability of deep learning algorithms to predict ARs. The results from the analysis advocate the application of deep learning algorithms to predict weather and climate extremes in decision support systems to enhance the climate resilience of a business ecosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1233330完成签到,获得积分10
刚刚
卧镁铀钳发布了新的文献求助20
1秒前
1秒前
Hans完成签到,获得积分20
1秒前
Kingrain完成签到,获得积分20
2秒前
阿木完成签到,获得积分10
2秒前
2秒前
傻芙芙的完成签到,获得积分10
2秒前
人间不清醒完成签到,获得积分20
3秒前
3秒前
4秒前
大模型应助甜甜映菡采纳,获得10
4秒前
lllll完成签到,获得积分10
4秒前
chen完成签到,获得积分10
4秒前
5秒前
xing完成签到,获得积分10
5秒前
在水一方应助直率芮采纳,获得10
5秒前
风铃完成签到,获得积分10
6秒前
CNY完成签到 ,获得积分10
6秒前
seusyy发布了新的文献求助10
6秒前
科研通AI5应助醉熏的立果采纳,获得10
6秒前
丘比特应助1998阿杰0526采纳,获得10
6秒前
7秒前
老杨发布了新的文献求助10
7秒前
7秒前
椰子壳完成签到,获得积分10
7秒前
yuanjw完成签到,获得积分20
8秒前
卧镁铀钳发布了新的文献求助10
8秒前
咖啡八块八完成签到,获得积分10
8秒前
liquor完成签到,获得积分10
8秒前
8秒前
小螃蟹完成签到 ,获得积分10
9秒前
9秒前
ttqql应助yy采纳,获得10
10秒前
xxx77发布了新的文献求助10
10秒前
ZOLEI完成签到,获得积分10
10秒前
10秒前
忧郁平文完成签到,获得积分10
10秒前
Tsuki完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556386
求助须知:如何正确求助?哪些是违规求助? 3131978
关于积分的说明 9394071
捐赠科研通 2832007
什么是DOI,文献DOI怎么找? 1556617
邀请新用户注册赠送积分活动 726755
科研通“疑难数据库(出版商)”最低求助积分说明 716062