Hybrid iteration and optimization-based three-dimensional reconstruction for space non-cooperative targets with monocular vision and sparse lidar fusion

点云 激光雷达 计算机科学 人工智能 计算机视觉 单目视觉 由运动产生的结构 分割 算法 运动估计 遥感 地质学
作者
Chi Zhang,Yonghua Guo,Deshan Meng,Wei Zhu,Wenjie Li,Jiangde Peng,Bin Liang
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:140: 108484-108484 被引量:3
标识
DOI:10.1016/j.ast.2023.108484
摘要

The measurement of reference pose and geometric size for space non-cooperative targets is an essential premise of on-orbit servicing. In this paper, a three-dimensional (3-D) reconstruction and autonomous geometric parameter identification method is proposed. An autonomous region segmentation algorithm with monocular vision and sparse lidar fusion is introduced, which realizes the multi-source match of rich features in images and scale information in point clouds. In order to densify the sparse point cloud, a multi-view fusion model is constructed with multi-objective optimization, which realizes the complementation of 3-D information. Further, a 3-D reconstruction method with hybrid iteration and optimization is proposed. Unlike the method with random sampling, the proposed method can obtain the optimal solution while reducing the influence of outliers. In other to verify the effectiveness of the proposed method, a complete set of simulation and experimental systems with modular and scalable software is built. The results show that the accuracy and stability are improved by no less than 27.88% and 38.99%, respectively. Besides, the inference speed is enhanced by at least one time. The proposed method can accurately and quickly identify the geometric parameters of targets with a cubical body, which will be used for motion estimation. Moreover, it can be extended to targets with a polyhedral body.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nnd完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
贪玩云朵完成签到,获得积分20
刚刚
刚刚
危机的仰发布了新的文献求助10
1秒前
1秒前
2秒前
junjieLIU完成签到,获得积分10
2秒前
科研通AI5应助狂野的绿柏采纳,获得10
2秒前
2秒前
空白的黑完成签到,获得积分10
2秒前
2秒前
可可发布了新的文献求助10
2秒前
3秒前
醉舞烟罗发布了新的文献求助10
4秒前
kuzzzzzzzz完成签到,获得积分20
4秒前
卡卡完成签到,获得积分10
4秒前
明明就发布了新的文献求助10
4秒前
与我常在完成签到,获得积分10
5秒前
5秒前
alile发布了新的文献求助10
5秒前
宝丁完成签到,获得积分10
5秒前
怡然绿兰完成签到,获得积分20
5秒前
jing完成签到,获得积分10
6秒前
热情的夏完成签到,获得积分10
6秒前
枫尽完成签到,获得积分10
6秒前
科研蠢狗发布了新的文献求助10
6秒前
糯米团的完成签到 ,获得积分10
6秒前
千风完成签到,获得积分10
6秒前
shinvkuo发布了新的文献求助10
7秒前
恬恬完成签到,获得积分10
7秒前
8秒前
8秒前
科研通AI5应助seven采纳,获得10
8秒前
CipherSage应助1231kk采纳,获得30
8秒前
科研通AI5应助xx采纳,获得10
8秒前
hoira完成签到,获得积分10
9秒前
辉hui发布了新的文献求助10
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487798
求助须知:如何正确求助?哪些是违规求助? 3075697
关于积分的说明 9141664
捐赠科研通 2767951
什么是DOI,文献DOI怎么找? 1518837
邀请新用户注册赠送积分活动 703346
科研通“疑难数据库(出版商)”最低求助积分说明 701805