T-HSER: Transformer Network Enabling Heart Sound Envelope Signal Reconstruction Based on Low Sampling Rate Millimeter Wave Radar

计算机科学 声学 极高频率 包络线(雷达) 连续波雷达 雷达 电子工程 雷达信号处理 脉冲多普勒雷达 信号处理 电信 雷达成像 物理 工程类
作者
Haibo Zhao,Yongtao Ma,Yuxiang Han,Chenglong Tian,Xinyue Huang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 1616-1628 被引量:4
标识
DOI:10.1109/jiot.2023.3291051
摘要

The four stages (first heart sound (S1), systole, second heart sound (S2), and diastole) of heartbeat sounds recorded by contact seismocardiogram (SCG) reflect the health of the heart, but these stages are challenging to measure by noncontact millimeter wave radar. If the sampling rate of millimeter wave radar is increased, this will increase the amount of data storage needed for the long-term monitoring of human vital signs. This article presents an algorithm for reconstructing the envelope of high-frequency heart sound signals using low-frequency millimeter wave radar signals, as well as a heart sound envelope segmentation algorithm based on peak points. Its design principle is a combination of signal processing and a transformer network, which is called T-HSER. This technique maps the low-frequency radar signal into a high-frequency heart sound envelope signal through the transformer network and determines the four different stages of the heart sound using appropriate thresholds. Based on the training of more than 30000 heartbeats of 25 healthy subjects and the prediction evaluation of six subjects, the T-HSER algorithm is shown to reconstruct the high-frequency heart sound envelope signal with high correlation. Moreover, the mean correlation can reach 0.85 on one minute of data, which is higher than that of the bidirectional long short-term memory algorithm, and can effectively distinguish the four stages of the heart sound so that the mean absolute error (MAE) between the predicted value and the ground truth of S1 and S2 is within a tolerable range (70 ms). At the same time, the algorithm is suitable for low sampling rate radar, which greatly reduces the amount of data storage required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲸鱼完成签到,获得积分10
刚刚
1秒前
HHHH完成签到,获得积分10
1秒前
2秒前
NEKO33发布了新的文献求助10
2秒前
樱香音子完成签到,获得积分10
2秒前
lesyeuxdexx完成签到 ,获得积分10
2秒前
杨涵完成签到 ,获得积分10
2秒前
AR完成签到,获得积分10
3秒前
貔貅完成签到,获得积分10
3秒前
青炀应助张兰采纳,获得10
3秒前
科研通AI5应助张兰采纳,获得10
3秒前
无花果应助Wang采纳,获得10
4秒前
5秒前
田田完成签到,获得积分10
5秒前
落后的听双完成签到 ,获得积分10
5秒前
稳住完成签到,获得积分10
6秒前
wsh发布了新的文献求助10
6秒前
6秒前
fvsuar完成签到,获得积分10
7秒前
infinite完成签到,获得积分10
7秒前
请叫我风吹麦浪应助momo采纳,获得10
7秒前
riceyellow完成签到,获得积分10
8秒前
8秒前
赖建琛完成签到 ,获得积分10
8秒前
9秒前
9秒前
sevenvictory应助cadcae采纳,获得10
9秒前
jianrobsim完成签到,获得积分10
10秒前
pups发布了新的文献求助10
10秒前
10秒前
xiaobai完成签到,获得积分10
10秒前
Shen完成签到,获得积分10
10秒前
Gilana完成签到,获得积分10
11秒前
fst完成签到,获得积分10
11秒前
poegtam完成签到,获得积分10
11秒前
noflatterer完成签到,获得积分10
11秒前
12秒前
rsdggsrser完成签到 ,获得积分10
12秒前
jianrobsim发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968608
求助须知:如何正确求助?哪些是违规求助? 3513486
关于积分的说明 11168243
捐赠科研通 3248926
什么是DOI,文献DOI怎么找? 1794540
邀请新用户注册赠送积分活动 875188
科研通“疑难数据库(出版商)”最低求助积分说明 804676