Physician selection based on user-generated content considering interactive criteria and risk preferences of patients

选择(遗传算法) 内容(测量理论) 计算机科学 情报检索 人工智能 数学 数学分析
作者
Fan Liu,Huchang Liao,Abdullah Al-Barakati
出处
期刊:Omega [Elsevier]
卷期号:115: 102784-102784 被引量:6
标识
DOI:10.1016/j.omega.2022.102784
摘要

• A criteria system for physician evaluation is retrieved from UGC. • A lexicon-based fine-grained sentiment analysis technique is developed. • An MCDM method considering risk attitudes and criteria interactions is proposed. • Data collected from haodf.com is applied to validate the proposed model. Online medical platform is a platform for patients to post their medical experience, collect medical information, and link doctors and patients for related medical activities. As the number of patients and doctors registered on the platform increases, there is an urgent need to consider how patients can identify useful information from the vast amount of information to help them make medical choices, and how the platform can provide distinctive medical choices based on the risk preferences of patients. In this paper, we propose a decision-making model that integrates a machine-learning method and a multi-criteria decision-making method to help patients to select physicians based on user-generated content considering interactive criteria and risk preferences of patients. Firstly, by data mining methods, various criteria included in user-generated content that influence patients' selection behavior are retrieved to construct a physician evaluation system. Secondly, a sentiment analysis method based on a medical review corpus is developed to mine satisfaction information from text reviews. Finally, a multi-criteria decision-making method is proposed considering patients' risk-averse preferences for medical services and the interactions among criteria. The validity of the proposed model is demonstrated by a case study of ranking psychologists from haodf.com. The comparisons with other methods and sensitivity analysis results provide suggestions to patients to choose psychologists and the website to rank psychologists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
April发布了新的文献求助10
刚刚
羊Q发布了新的文献求助10
1秒前
yuzhanli完成签到,获得积分10
1秒前
1秒前
gy完成签到,获得积分10
1秒前
1秒前
?。?完成签到 ,获得积分10
1秒前
2秒前
劲秉应助孜火采纳,获得30
3秒前
3秒前
埮埮完成签到,获得积分10
3秒前
哈哈哈发布了新的文献求助10
3秒前
卡卡完成签到 ,获得积分10
4秒前
5秒前
多边形发布了新的文献求助30
5秒前
。.。发布了新的文献求助10
7秒前
nana发布了新的文献求助10
8秒前
李爱国应助震动的千萍采纳,获得10
8秒前
皮念寒发布了新的文献求助10
8秒前
8秒前
66发布了新的文献求助10
8秒前
霏冉完成签到,获得积分10
8秒前
8秒前
酷波er应助小小采纳,获得10
9秒前
9秒前
9秒前
鱼鱼鱼KYSL完成签到 ,获得积分10
10秒前
labulabu应助Allen采纳,获得10
11秒前
岸芷汀兰完成签到,获得积分10
11秒前
picapica668应助幸福水儿采纳,获得10
12秒前
思源应助飘逸的落叶松采纳,获得10
12秒前
风槿完成签到 ,获得积分20
12秒前
12秒前
焦丹尼完成签到,获得积分10
13秒前
华仔发布了新的文献求助10
13秒前
一页发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
易达发布了新的文献求助10
15秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470572
求助须知:如何正确求助?哪些是违规求助? 3063599
关于积分的说明 9084461
捐赠科研通 2754032
什么是DOI,文献DOI怎么找? 1511188
邀请新用户注册赠送积分活动 698333
科研通“疑难数据库(出版商)”最低求助积分说明 698221