生成设计
判别式
生成语法
拓扑优化
计算机科学
领域(数学)
人工智能
机器学习
超材料
托换
光电子学
数学
工程类
纯数学
材料科学
公制(单位)
土木工程
有限元法
结构工程
运营管理
作者
Changliang Zhu,Emmanuel Anuoluwa Bamidele,Xiangying Shen,Guimei Zhu,Baowen Li
出处
期刊:Chemical Reviews
[American Chemical Society]
日期:2024-03-28
卷期号:124 (7): 4258-4331
被引量:10
标识
DOI:10.1021/acs.chemrev.3c00708
摘要
Artificial Intelligence (AI) has advanced material research that were previously intractable, for example, the machine learning (ML) has been able to predict some unprecedented thermal properties. In this review, we first elucidate the methodologies underpinning discriminative and generative models, as well as the paradigm of optimization approaches. Then, we present a series of case studies showcasing the application of machine learning in thermal metamaterial design. Finally, we give a brief discussion on the challenges and opportunities in this fast developing field. In particular, this review provides: (1) Optimization of thermal metamaterials using optimization algorithms to achieve specific target properties. (2) Integration of discriminative models with optimization algorithms to enhance computational efficiency. (3) Generative models for the structural design and optimization of thermal metamaterials.
科研通智能强力驱动
Strongly Powered by AbleSci AI