HDECGCN: A Heterogeneous Dual Enhanced Network Based on Hybrid CNNs Joint Multiscale Dynamic GCNs for Hyperspectral Image Classification

高光谱成像 计算机科学 像素 人工智能 分割 模式识别(心理学) 卷积神经网络 图像分割
作者
Xuan Liu,Suchen Liu,Wangyou Chen,Shenming Qu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:1
标识
DOI:10.1109/tgrs.2024.3387420
摘要

A hyperspectral image (HSI) classification algorithm that combines graph convolutional networks (GCNs) and convolutional neural networks (CNNs) aims to generate complementary spatial-spectral joint information at the superpixel and pixel levels. However, the CNN part is typically a single 2D or 3D network that cannot fully capture the middle or long-range spatial relationships between pixels. Additionally, the GCNs part is commonly under-segmented in the superpixel segmentation process and does not consider the weight between neighboring superpixels when calculating the adjacency matrix. Therefore, this paper proposes a multi-scale dynamic tuning parameter, where the dual superpixel segmentation GCN strategy joins the enhanced hybrid 3D-2D CNN framework to enhance the superpixel and pixel complementary nature. The hybrid enhanced CNN branch uses the groupable convolutions with a mixed spectral stacking and residual non-local block at the hybrid convolution output to overcome the accuracy degradation problem caused by long convolutional layers and poor generalization performance of a single network structure. An additional branch performs simple linear iterative clustering and entropy rate superpixel segmentation, which are sequentially implemented on the HSI to solve the under-segmentation problem. This strategy is important, as dynamically calculating the tuning parameters for feature segmentation maps increases the number of the multi-scale GCN layers and fully extracts contextual spatial information. Experiments on three public datasets, Indian Pines, Kennedy Space Center, and the University of Pavia, demonstrate that the proposed framework achieves the optimal OA, AA, and Kappa coefficients. The source code is available at https://github.com/henulx/HDECGCN-Framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ame发布了新的文献求助10
刚刚
乐乐应助乐观采纳,获得10
1秒前
酸奶球完成签到 ,获得积分10
1秒前
坚强幼晴发布了新的文献求助10
2秒前
美好芳发布了新的文献求助10
2秒前
研友_8y2o0L发布了新的文献求助10
3秒前
怕黑的道天完成签到,获得积分10
5秒前
5秒前
平常的无极完成签到,获得积分10
5秒前
Ame完成签到,获得积分10
6秒前
脑洞疼应助sfxnxgu采纳,获得10
6秒前
oysp完成签到,获得积分10
8秒前
Axe完成签到,获得积分10
9秒前
9秒前
斯文败类应助甜美的惠采纳,获得10
9秒前
10秒前
vv发布了新的文献求助10
10秒前
11秒前
Andrew完成签到,获得积分10
13秒前
沉默的阁发布了新的文献求助20
15秒前
asdfqwer发布了新的文献求助10
16秒前
可爱因子发布了新的文献求助10
16秒前
清歌完成签到,获得积分20
17秒前
卢不评发布了新的文献求助10
17秒前
19秒前
在水一方应助美好芳采纳,获得10
19秒前
vv完成签到,获得积分10
20秒前
个性的紫菜应助summer夏采纳,获得10
20秒前
清歌发布了新的文献求助10
21秒前
21秒前
Dana完成签到 ,获得积分10
23秒前
可爱因子完成签到,获得积分20
25秒前
mdie发布了新的文献求助10
25秒前
充电宝应助无心的行云采纳,获得10
25秒前
25秒前
卢不评完成签到,获得积分10
25秒前
小马甲应助机智的傲柏采纳,获得10
25秒前
乐观凝梦发布了新的文献求助10
26秒前
小李完成签到,获得积分10
26秒前
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140624
求助须知:如何正确求助?哪些是违规求助? 2791434
关于积分的说明 7798983
捐赠科研通 2447824
什么是DOI,文献DOI怎么找? 1302046
科研通“疑难数据库(出版商)”最低求助积分说明 626434
版权声明 601194