亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A systematic review and research recommendations on artificial intelligence for automated cervical cancer detection

宫颈癌 癌症 医学 医学物理学 计算机科学 人工智能 内科学
作者
Smith K. Khare,Victoria Blanes‐Vidal,Berit Bargum Booth,Lone Kjeld Petersen,Esmaeil S. Nadimi
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:14 (6)
标识
DOI:10.1002/widm.1550
摘要

Abstract Early diagnosis of abnormal cervical cells enhances the chance of prompt treatment for cervical cancer (CrC). Artificial intelligence (AI)‐assisted decision support systems for detecting abnormal cervical cells are developed because manual identification needs trained healthcare professionals, and can be difficult, time‐consuming, and error‐prone. The purpose of this study is to present a comprehensive review of AI technologies used for detecting cervical pre‐cancerous lesions and cancer. The review study includes studies where AI was applied to Pap Smear test (cytological test), colposcopy, sociodemographic data and other risk factors, histopathological analyses, magnetic resonance imaging‐, computed tomography‐, and positron emission tomography‐scan‐based imaging modalities. We performed searches on Web of Science, Medline, Scopus, and Inspec. The preferred reporting items for systematic reviews and meta‐analysis guidelines were used to search, screen, and analyze the articles. The primary search resulted in identifying 9745 articles. We followed strict inclusion and exclusion criteria, which include search windows of the last decade, journal articles, and machine/deep learning‐based methods. A total of 58 studies have been included in the review for further analysis after identification, screening, and eligibility evaluation. Our review analysis shows that deep learning models are preferred for imaging techniques, whereas machine learning‐based models are preferred for sociodemographic data. The analysis shows that convolutional neural network‐based features yielded representative characteristics for detecting pre‐cancerous lesions and CrC. The review analysis also highlights the need for generating new and easily accessible diverse datasets to develop versatile models for CrC detection. Our review study shows the need for model explainability and uncertainty quantification to increase the trust of clinicians and stakeholders in the decision‐making of automated CrC detection models. Our review suggests that data privacy concerns and adaptability are crucial for deployment hence, federated learning and meta‐learning should also be explored. This article is categorized under: Fundamental Concepts of Data and Knowledge > Explainable AI Technologies > Machine Learning Technologies > Classification
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星仙人掌完成签到 ,获得积分10
2秒前
kaka完成签到,获得积分10
2秒前
上官若男应助英勇的鼠标采纳,获得10
4秒前
ovoclive完成签到,获得积分10
8秒前
赘婿应助小仙女采纳,获得10
10秒前
samueldeng完成签到,获得积分10
14秒前
小蘑菇应助nini采纳,获得10
18秒前
长常九久完成签到 ,获得积分10
20秒前
21秒前
糊糊完成签到,获得积分20
22秒前
辜月十二完成签到 ,获得积分10
22秒前
25秒前
小仙女发布了新的文献求助10
26秒前
完美世界应助英勇的鼠标采纳,获得10
26秒前
27秒前
zho发布了新的文献求助10
29秒前
nini发布了新的文献求助10
32秒前
欣喜的璎应助lsl采纳,获得10
36秒前
orixero应助科研通管家采纳,获得10
47秒前
寻道图强应助科研通管家采纳,获得30
47秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
可爱的函函应助sinan采纳,获得10
49秒前
彭于晏应助彭医生采纳,获得10
52秒前
58秒前
NexusExplorer应助杨可言采纳,获得10
1分钟前
1分钟前
1分钟前
hyz发布了新的文献求助10
1分钟前
1分钟前
Sylvia_J完成签到 ,获得积分10
1分钟前
1分钟前
XHW发布了新的文献求助10
1分钟前
1分钟前
hyz发布了新的文献求助10
1分钟前
洁净绝山发布了新的文献求助10
1分钟前
小土豆完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助hyz采纳,获得10
1分钟前
彭医生发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3213127
求助须知:如何正确求助?哪些是违规求助? 2861904
关于积分的说明 8131018
捐赠科研通 2527823
什么是DOI,文献DOI怎么找? 1361769
科研通“疑难数据库(出版商)”最低求助积分说明 643516
邀请新用户注册赠送积分活动 615863