Underwater Robot Target Detection Algorithm Based on YOLOv8

水下 卷积(计算机科学) 计算机科学 机器人 人工智能 算法 鉴定(生物学) 计算机视觉 目标检测 卷积神经网络 模式识别(心理学) 人工神经网络 地质学 海洋学 植物 生物
作者
Guangwu Song,Wei Chen,Qilong Zhou,Chenkai Guo
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (17): 3374-3374 被引量:2
标识
DOI:10.3390/electronics13173374
摘要

Although the ocean is rich in energy and covers a vast portion of the planet, the present results of underwater target identification are not sufficient because of the complexity of the underwater environment. An enhanced technique based on YOLOv8 is proposed to solve the problems of low identification accuracy and low picture quality in the target detection of current underwater robots. Firstly, considering the issue of model parameters, only the convolution of the ninth layer is modified, and the deformable convolution is designed to be adaptive. Certain parts of the original convolution are replaced with DCN v3, in order to address the issue of the deformation of underwater photos with fewer parameters and more effectively capture the deformation and fine details of underwater objects. Second, the ability to recognize multi-scale targets is improved by employing SPPFCSPC, and the ability to express features is improved by combining high-level semantic features with low-level shallow features. Lastly, using WIoU loss v3 instead of the CIoU loss function improves the overall performance of the model. The enhanced algorithm mAP achieves 86.5%, an increase of 2.1% over the YOLOv8s model, according to the results of the testing of the underwater robot grasping. This meets the real-time detection needs of underwater robots and significantly enhances the performance of the object detection model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助多情邑采纳,获得10
刚刚
2秒前
今后应助灵巧妙柏采纳,获得10
2秒前
coconutluv77发布了新的文献求助10
2秒前
一二三砰发布了新的文献求助10
4秒前
哎呀完成签到,获得积分10
4秒前
5秒前
6秒前
7秒前
脑洞疼应助默顿的笔记本采纳,获得10
7秒前
7秒前
wonder123发布了新的文献求助10
7秒前
温暖雨灵完成签到,获得积分20
8秒前
iNk应助YellowStar采纳,获得10
8秒前
辛辛应助麦子采纳,获得10
9秒前
9秒前
然12138发布了新的文献求助10
10秒前
hanghang完成签到,获得积分10
10秒前
哎呀发布了新的文献求助10
11秒前
灵巧妙柏完成签到,获得积分10
11秒前
FF完成签到 ,获得积分10
11秒前
11秒前
12秒前
好滴捏发布了新的文献求助10
12秒前
16秒前
17秒前
上官若男应助ddddd采纳,获得10
17秒前
18秒前
贤惠的白开水完成签到 ,获得积分10
18秒前
圆圆完成签到 ,获得积分10
18秒前
光亮语梦完成签到 ,获得积分10
18秒前
小白完成签到 ,获得积分10
22秒前
王维佳发布了新的文献求助10
22秒前
Orange应助认真初之采纳,获得10
22秒前
金鱼发布了新的文献求助10
23秒前
23秒前
23秒前
24秒前
24秒前
研究牛王完成签到,获得积分20
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176