GABoost: Graph Alignment Boosting via Local Optimum Escape

Boosting(机器学习) 计算机科学 图形 人工智能 理论计算机科学
作者
Wei Liu,Wei Zhang,Hantao Zhao,Zhi Jin
标识
DOI:10.1145/3677135
摘要

Heterogeneous graphs provide a universal data structure for representing various kinds of structured data in numerous domains. The graph alignment problem aims to find the correspondences of vertices in different graphs, playing a fundamental role in many downstream tasks of heterogeneous graph mining. In recent years, many graph alignment methods have been proposed, ranging from classical optimization methods , spectral methods , to embedding learning based-methods . Due to the problem's complexity, the result found by most existing methods is either a heuristic solution or a critical point in the solution space. In this paper, we propose GABoost, a graph alignment boosting algorithm that takes as input an initial alignment between two heterogeneous graphs and outputs a boosted alignment via an iterative local-optimum-escape process. One of the distinctive features of GABoost is that it can be sequentially composed with any graph alignment methods to improve the output of upstream methods. To examine the effectiveness of GABoost, we select 7 upstream methods of graph alignment as well as 6 real-world datasets, and quantitatively investigate the degree to which GABoost boosts these methods. The results show that GABoost improves the alignment accuracy of the 7 upstream methods by 25.25% on average with acceptable time overhead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雾草生完成签到,获得积分10
1秒前
斯文败类应助功夫采纳,获得10
1秒前
yu发布了新的文献求助10
1秒前
傅宛白发布了新的文献求助20
1秒前
1秒前
1秒前
SYLH应助LOVEMEVOL采纳,获得10
2秒前
大清完成签到,获得积分10
2秒前
中科路2020完成签到,获得积分10
3秒前
大个应助旺仔秋秋糖采纳,获得10
3秒前
lucifer0922发布了新的文献求助50
3秒前
3秒前
玉米发布了新的文献求助10
4秒前
苏格拉胯发布了新的文献求助10
4秒前
4秒前
4秒前
秦艽完成签到,获得积分10
4秒前
乐乐应助憨憨芸采纳,获得10
4秒前
柒玖完成签到 ,获得积分10
5秒前
5秒前
5秒前
调皮帽子完成签到,获得积分20
6秒前
xx完成签到,获得积分10
6秒前
6秒前
6秒前
南风完成签到,获得积分10
7秒前
7秒前
lee发布了新的文献求助10
7秒前
zxx发布了新的文献求助10
7秒前
8秒前
anna完成签到,获得积分10
8秒前
行者完成签到,获得积分10
8秒前
Akari发布了新的文献求助30
8秒前
NSS完成签到,获得积分10
8秒前
路过人间完成签到,获得积分10
8秒前
伶俐小凝发布了新的文献求助10
9秒前
斯文败类应助彩色的过客采纳,获得10
9秒前
眼镜胖子关注了科研通微信公众号
9秒前
幸福糖豆完成签到,获得积分10
9秒前
zhang发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
Interest Rate Modeling. Volume 1: Foundations and Vanilla Models 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539584
求助须知:如何正确求助?哪些是违规求助? 3117278
关于积分的说明 9329702
捐赠科研通 2814967
什么是DOI,文献DOI怎么找? 1547365
邀请新用户注册赠送积分活动 720905
科研通“疑难数据库(出版商)”最低求助积分说明 712351