On the condition monitoring of bolted joints through acoustic emission and deep transfer learning: generalization, ordinal loss, and super-convergence

学习迁移 计算机科学 人工智能 一般化 卷积神经网络 结构健康监测 水准点(测量) 模式识别(心理学) 特征提取 假警报 深度学习 特征(语言学) 声发射 机器学习 结构工程 工程类 声学 数学 数学分析 物理 语言学 哲学 大地测量学 地理
作者
Emmanuel Ramasso,Rafael de Oliveira Teloli,Romain Marcel
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241259668
摘要

This paper investigates the use of deep transfer learning based on convolutional neural networks (CNNs) to monitor the condition of bolted joints using acoustic emissions (AEs). Bolted structures are critical components in many mechanical systems, and the ability to monitor their condition status is crucial for effective structural health monitoring. We evaluated the performance of our methodology using the ORION-AE benchmark, a structure composed of two thin beams connected by three bolts, where highly noisy AE measurements were taken to detect changes in the applied tightening torque of the bolts. The data used from this structure is derived from the transformation of AE data streams into images using continuous wavelet transform, and leveraging pretrained CNNs for feature extraction and denoising. Our experiments compared single-sensor versus multiple-sensor fusion for estimating the tightening level (loosening) of bolts and evaluated the use of raw versus prefiltered data on the performance. We particularly focused on the generalization capabilities of CNN-based transfer learning across different measurement campaigns and we studied ordinal loss functions to penalize incorrect predictions less severely when close to the ground truth, thereby encouraging misclassification errors to be in adjacent classes. Network configurations as well as learning rate schedulers are also investigated, and super-convergence is obtained, that is, high classification accuracy is achieved in a few numbers of iterations with different networks. Furthermore, results demonstrate the generalization capabilities of CNN-based transfer learning for monitoring bolted structures by AE with varying amounts of prior information required during training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
巴啦啦小魔仙完成签到,获得积分10
刚刚
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
刚刚
passionate完成签到,获得积分10
1秒前
sevten完成签到 ,获得积分10
1秒前
清都完成签到 ,获得积分10
1秒前
幽默的南霜完成签到,获得积分10
3秒前
11发布了新的文献求助10
5秒前
li1发布了新的文献求助10
5秒前
发财完成签到,获得积分10
6秒前
威武诺言完成签到,获得积分10
6秒前
7秒前
7秒前
乐乐应助sahcygv采纳,获得10
8秒前
忙碌的数学人完成签到,获得积分10
8秒前
btutou完成签到 ,获得积分20
8秒前
9秒前
科科研研完成签到,获得积分10
9秒前
微笑芒果完成签到 ,获得积分10
10秒前
11秒前
Hh完成签到,获得积分10
12秒前
13秒前
许木子发布了新的文献求助10
14秒前
yingtian关注了科研通微信公众号
14秒前
科科研研发布了新的文献求助10
15秒前
xxlbp完成签到,获得积分10
15秒前
16秒前
16秒前
wangtubianou发布了新的文献求助10
16秒前
CipherSage应助屁王采纳,获得10
18秒前
yyy完成签到,获得积分10
19秒前
娟娟完成签到,获得积分10
19秒前
悦悦发布了新的文献求助10
20秒前
Qiang发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124688
求助须知:如何正确求助?哪些是违规求助? 2775052
关于积分的说明 7725125
捐赠科研通 2430553
什么是DOI,文献DOI怎么找? 1291228
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323