On the condition monitoring of bolted joints through acoustic emission and deep transfer learning: generalization, ordinal loss, and super-convergence

学习迁移 计算机科学 人工智能 一般化 卷积神经网络 结构健康监测 水准点(测量) 模式识别(心理学) 特征提取 假警报 深度学习 特征(语言学) 声发射 机器学习 结构工程 工程类 声学 数学 数学分析 物理 语言学 哲学 大地测量学 地理
作者
Emmanuel Ramasso,Rafael de Oliveira Teloli,Romain Marcel
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:2
标识
DOI:10.1177/14759217241259668
摘要

This paper investigates the use of deep transfer learning based on convolutional neural networks (CNNs) to monitor the condition of bolted joints using acoustic emissions (AEs). Bolted structures are critical components in many mechanical systems, and the ability to monitor their condition status is crucial for effective structural health monitoring. We evaluated the performance of our methodology using the ORION-AE benchmark, a structure composed of two thin beams connected by three bolts, where highly noisy AE measurements were taken to detect changes in the applied tightening torque of the bolts. The data used from this structure is derived from the transformation of AE data streams into images using continuous wavelet transform, and leveraging pretrained CNNs for feature extraction and denoising. Our experiments compared single-sensor versus multiple-sensor fusion for estimating the tightening level (loosening) of bolts and evaluated the use of raw versus prefiltered data on the performance. We particularly focused on the generalization capabilities of CNN-based transfer learning across different measurement campaigns and we studied ordinal loss functions to penalize incorrect predictions less severely when close to the ground truth, thereby encouraging misclassification errors to be in adjacent classes. Network configurations as well as learning rate schedulers are also investigated, and super-convergence is obtained, that is, high classification accuracy is achieved in a few numbers of iterations with different networks. Furthermore, results demonstrate the generalization capabilities of CNN-based transfer learning for monitoring bolted structures by AE with varying amounts of prior information required during training.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RUI1128发布了新的文献求助10
2秒前
豆豆发布了新的文献求助10
2秒前
4秒前
5秒前
6秒前
脑洞大开发布了新的文献求助10
6秒前
wuhu发布了新的文献求助10
8秒前
guyuangyy完成签到,获得积分10
8秒前
平淡的梦菲完成签到,获得积分10
10秒前
10秒前
dongdong完成签到,获得积分20
11秒前
12秒前
科研小尹完成签到,获得积分20
12秒前
循环完成签到,获得积分10
12秒前
13秒前
雨后发布了新的文献求助20
13秒前
plusweng完成签到 ,获得积分10
15秒前
mignonettely发布了新的文献求助10
15秒前
hh发布了新的文献求助10
16秒前
一顿鸡米花完成签到,获得积分10
16秒前
clyde凌丫完成签到 ,获得积分10
17秒前
天一发布了新的文献求助10
18秒前
明理吐司完成签到,获得积分10
19秒前
踏实孤容完成签到,获得积分10
20秒前
一颗好困芽完成签到 ,获得积分10
21秒前
上官若男应助aichan采纳,获得10
22秒前
星辰大海应助nostalgic采纳,获得10
24秒前
豆豆完成签到,获得积分10
24秒前
han完成签到,获得积分10
24秒前
26秒前
祎祎完成签到,获得积分10
27秒前
hh完成签到,获得积分10
29秒前
29秒前
一一发布了新的文献求助10
30秒前
buerger完成签到,获得积分10
31秒前
Peppermint完成签到,获得积分10
31秒前
mujianhua完成签到,获得积分20
31秒前
31秒前
32秒前
共享精神应助JingP采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600866
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843743
捐赠科研通 4678603
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241