Self-Supervised Representation Learning for Video Quality Assessment

计算机科学 人工智能 特征学习 机器学习 视频质量 代表(政治) 学习迁移 模式识别(心理学) 公制(单位) 运营管理 政治 政治学 法学 经济
作者
Shaojie Jiang,Qingbing Sang,Zongyao Hu,Lixiong Liu
出处
期刊:IEEE Transactions on Broadcasting [Institute of Electrical and Electronics Engineers]
卷期号:69 (1): 118-129 被引量:1
标识
DOI:10.1109/tbc.2022.3197904
摘要

No-reference (NR) video quality assessment (VQA) is a challenging problem due to the difficulty in model training caused by insufficient annotation samples. Previous work commonly utilizes transfer learning to directly migrate pre-trained models on the image database, which suffers from domain inadaptation. Recently, self-supervised representation learning has become a hot spot for the independence of large-scale labeled data. However, existing self-supervised representation learning method only considers the distortion types and contents of the video, there needs to investigate the intrinsic properties of videos for the VQA task. To amend this, here we propose a novel multi-task self-supervised representation learning framework to pre-train a video quality assessment model. Specifically, we consider the effects of distortion degrees, distortion types, and frame rates on the perceived quality of videos, and utilize them as guidance to generate self-supervised samples and labels. Then, we optimize the ability of the VQA model in capturing spatio-temporal differences between the original video and the distorted version using three pretext tasks. The resulting framework not only eases the requirements for the quality of the original video but also benefits from the self-supervised labels as well as the Siamese network. In addition, we propose a Transformer-based VQA model, where short-term spatio-temporal dependencies of videos are modeled by 3D-CNN and 2D-CNN, and then the long-term spatio-temporal dependencies are modeled by Transformer because of its excellent long-term modeling capability. We evaluated the proposed method on four public video quality assessment databases and found that it is competitive with all compared VQA algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懵懂的怜南完成签到,获得积分10
刚刚
小马甲应助suwan采纳,获得10
3秒前
4秒前
乐乐应助LHNini采纳,获得10
4秒前
4秒前
4秒前
jhcraul发布了新的文献求助10
5秒前
5秒前
优美的美女完成签到,获得积分10
7秒前
7秒前
Estella完成签到,获得积分10
8秒前
nancy wang发布了新的文献求助20
9秒前
10秒前
Bill完成签到 ,获得积分10
10秒前
刹那发布了新的文献求助10
10秒前
充电宝应助平常心采纳,获得10
11秒前
阿斗发布了新的文献求助10
12秒前
杨柳9203发布了新的文献求助10
12秒前
faye发布了新的文献求助10
13秒前
13秒前
14秒前
Zy完成签到,获得积分10
14秒前
lele033086完成签到 ,获得积分10
15秒前
彭于晏应助乎乎采纳,获得10
15秒前
完美世界应助高高的罡采纳,获得30
16秒前
Estella发布了新的文献求助10
16秒前
花花完成签到,获得积分10
17秒前
在水一方应助团子采纳,获得10
17秒前
wjx关闭了wjx文献求助
17秒前
17秒前
科目三应助乐乐乐乐乐乐采纳,获得10
18秒前
清新的芷完成签到,获得积分10
20秒前
20秒前
WerWu完成签到,获得积分10
21秒前
DO完成签到,获得积分10
21秒前
21秒前
酷波er应助杨柳9203采纳,获得10
22秒前
wjx关闭了wjx文献求助
22秒前
zhy发布了新的文献求助10
22秒前
所所应助Villanellel采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
A mandible of Pliosaurus brachyspondylus (Reptilia, Sauropterygia) from the Kimmeridgian of the Boulonnais (France) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3684977
求助须知:如何正确求助?哪些是违规求助? 3235860
关于积分的说明 9823031
捐赠科研通 2947601
什么是DOI,文献DOI怎么找? 1616338
邀请新用户注册赠送积分活动 763589
科研通“疑难数据库(出版商)”最低求助积分说明 737941