传热
潜热
热能储存
材料科学
压力降
机械
流量(数学)
填充床
热的
工作(物理)
多孔性
多孔介质
机械工程
热力学
复合材料
工程类
化学工程
物理
作者
Xiangzhi Zhang,Ya-Tao Ren,Yong Ren,Yuying Yan
标识
DOI:10.1016/j.tsep.2022.101449
摘要
The main content of this work is to propose a novel bionic solution to overcome the nonuniformity of flow and temperature distribution, which is an inherent problem and restriction for conventional latent heat storage devices. By learning from animal circulatory systems, the inner space and flow channel network are distributed hierarchically as arteries, veins, capillaries and ventricles. A conceptual configuration of the bionic system is presented, and its numerical model is established to demonstrate the flow and heat transfer phenomena. The encapsulated PCM that is used in this study is fabricated and parameters related have been measured by experiments. A numerical model of a 3D continuous PCM bed is established to help research the flow of HTF through the surfaces of PCM particles and the heat transfer between them. Then, a model of a simplified bionic device is developed where the PCM region is set as a porous domain. The results show the flow and temperature fields are distributed uniformly, along with a much smaller global pressure drop. By allocating the thermal load on cascaded layers with stepwise PCMs, a more homogeneous global temperature difference can be achieved.
科研通智能强力驱动
Strongly Powered by AbleSci AI