Research progress of computer vision technology in abnormal fish detection

计算机科学 人工智能 水产养殖 任务(项目管理) 质量(理念) 机器学习 渔业 生物 工程类 系统工程 哲学 认识论
作者
Chunhong Liu,Zhiyong Wang,Yachao Li,Zhenzuo Zhang,Jia Li,Xu Chen,Rongxiang Du,Daoliang Li,Qingling Duan
出处
期刊:Aquacultural Engineering [Elsevier]
卷期号:103: 102350-102350 被引量:7
标识
DOI:10.1016/j.aquaeng.2023.102350
摘要

Abnormal fish detection helps producers adjust breeding strategies in a timely manner to prevent the occurrence of diseases and improve aquaculture efficiency and quality. The rapid development of computer vision technology provides a noninvasive method for abnormal fish detection, which can be used to identify and classify abnormal fish. This paper provides an overview of the research progress of computer vision techniques in detecting abnormal fish over the past two decades. For the first time, the abnormal fish detection task is divided into three external manifestations: abnormal physiological activities, abnormal trajectories, and abnormal surface features of fish. The traditional methods and deep learning methods in computer vision technology are further summarized for their application approaches in these three research types, and the commonly used classical algorithm models in abnormal fish detection are introduced comprehensively. In addition, this paper summarizes several common methods for obtaining public datasets in aquaculture and evaluation indicators of model accuracy, emphasizing two methods for researchers to collect experimental on-site data. Finally, based on the above work, this paper analyzes several challenges in abnormal fish detection, proposes feasible strategies for each challenge, and notes the importance of improving models to effectively integrate and analyze data from multiple platforms. This paper provides some reference value for research on abnormal fish.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助笑一笑采纳,获得10
1秒前
2秒前
xun发布了新的文献求助20
2秒前
yyh完成签到,获得积分10
2秒前
共享精神应助清爽的薄荷采纳,获得30
3秒前
YouziBa完成签到,获得积分10
4秒前
LLLL完成签到,获得积分10
4秒前
周子淦发布了新的文献求助10
5秒前
5秒前
edtaa发布了新的文献求助10
7秒前
vica发布了新的文献求助30
7秒前
小李爱科研完成签到,获得积分20
8秒前
wxy完成签到,获得积分20
9秒前
wxy发布了新的文献求助10
12秒前
zhu完成签到,获得积分10
13秒前
13秒前
100完成签到,获得积分10
14秒前
14秒前
冷静荠完成签到 ,获得积分10
15秒前
李爱国应助dll采纳,获得10
15秒前
坤仔发布了新的文献求助10
15秒前
Akim应助惊天大幂幂采纳,获得10
17秒前
小刘发布了新的文献求助10
17秒前
风中的英完成签到,获得积分10
17秒前
乐观德地应助啦啦啦采纳,获得10
18秒前
年糕完成签到,获得积分10
18秒前
万能图书馆应助Ethan采纳,获得30
18秒前
小二郎应助vine采纳,获得10
19秒前
getDoc完成签到,获得积分10
20秒前
22秒前
priss111应助风中的英采纳,获得30
23秒前
25秒前
阿猩a完成签到 ,获得积分10
25秒前
25秒前
烟花应助yurong采纳,获得10
25秒前
Ava应助枍枫采纳,获得10
28秒前
Altria发布了新的文献求助10
28秒前
研友_VZG7GZ应助坤仔采纳,获得30
28秒前
七_完成签到,获得积分10
29秒前
Ethan发布了新的文献求助30
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161577
求助须知:如何正确求助?哪些是违规求助? 2812863
关于积分的说明 7897487
捐赠科研通 2471775
什么是DOI,文献DOI怎么找? 1316151
科研通“疑难数据库(出版商)”最低求助积分说明 631219
版权声明 602112