Dynamic fitness-distance balance-based artificial rabbits optimization algorithm to solve optimal power flow problem

数学优化 计算机科学 水准点(测量) 局部最优 元启发式 粒子群优化 算法 趋同(经济学) 适应度比例选择 背景(考古学) 局部搜索(优化) 群体智能 数学 适应度函数 遗传算法 古生物学 大地测量学 经济增长 经济 生物 地理
作者
Hüseyin Bakır
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:240: 122460-122460 被引量:15
标识
DOI:10.1016/j.eswa.2023.122460
摘要

Artificial rabbits optimization (ARO) is a swarm intelligence-based algorithm inspired by the survival strategies of rabbits. Although ARO has a good convergence rate, it is prone to get stuck in the local optima and converge prematurely. To overcome this, the present paper redesigns the exploration operator of the ARO algorithm with the roulette fitness-distance balance (RFDB) and dynamic fitness-distance balance (dFDB) strategies. In this context, three different versions of the fitness-distance balance-based artificial rabbits optimization (FDBARO) algorithm are developed. The performance of the original ARO and FDBARO versions (FDBARO-1, FDBARO-2, and FDBARO-3) are evaluated on CEC 2017 and CEC 2020 benchmark functions. The obtained results are analyzed with the Wilcoxon and Friedman statistical tests. Statistical and convergence analysis results showed that the FDBARO-3 algorithm designed with the dFDB selection method can explore the search space more successfully compared to other algorithms. This version was named the dynamic FDBARO (dFDBARO) algorithm. Moreover, the practicability of the proposed dFDBARO is highlighted by the solution of the optimal power flow (OPF) problem formulated with renewable energy sources (RESs) and flexible alternating current transmission system (FACTS) devices considering fixed and uncertain load demands. Experimental results showed that the proposed dFDBARO is a competitive algorithm for solving global optimization and constrained OPF problems. The source code of the dFDBARO algorithm is available at https://www.mathworks.com/matlabcentral/fileexchange/154845-dfdbaro-an-enhanced-metaheuristic-algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夕诙发布了新的文献求助50
1秒前
1秒前
兔BF完成签到,获得积分10
1秒前
落叶捎来讯息完成签到 ,获得积分10
1秒前
善学以致用应助学术嫪毐采纳,获得10
1秒前
SciGPT应助果实采纳,获得10
2秒前
keyangouderic发布了新的文献求助10
3秒前
lzq完成签到 ,获得积分10
3秒前
淡然老头发布了新的文献求助10
4秒前
喵喵发布了新的文献求助10
4秒前
向北发布了新的文献求助10
4秒前
4秒前
无奈的萝完成签到,获得积分10
4秒前
小柯发布了新的文献求助10
4秒前
4秒前
竹筏过海应助wyd采纳,获得30
5秒前
阿兰完成签到 ,获得积分10
5秒前
小二郎应助阿爽采纳,获得10
5秒前
5秒前
5秒前
5秒前
周em12_完成签到,获得积分10
6秒前
马美丽完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
在水一方应助复杂的宝马采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
中科院一区选手完成签到,获得积分10
8秒前
keyangouderic完成签到,获得积分10
9秒前
Henry给Henry的求助进行了留言
9秒前
10秒前
夕诙完成签到,获得积分0
10秒前
陈陈陈发布了新的文献求助10
10秒前
自由香魔发布了新的文献求助10
10秒前
11秒前
guons发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960857
求助须知:如何正确求助?哪些是违规求助? 3507137
关于积分的说明 11133875
捐赠科研通 3239467
什么是DOI,文献DOI怎么找? 1790120
邀请新用户注册赠送积分活动 872177
科研通“疑难数据库(出版商)”最低求助积分说明 803149